• Title/Summary/Keyword: Phytoplankton Community

Search Result 392, Processing Time 0.028 seconds

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

Variations in Plankton Assemblage in a Semi-Closed Chunsu Bay, Korea (반폐쇄적인 천수만 해역의 플랑크톤 군집 변화)

  • Lee, Jae-Kwang;Park, Chul;Lee, Doo-Byoul;Lee, Sang-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.95-111
    • /
    • 2012
  • Relationship between plankton assemblage and environmental factors in a semi-closed Chunsu Bay was examined. Temporal changes in phytoplankton assemblage was rather drastic than those found in most Korean coastal area in the Yellow Sea primarily due to the seawater temperature (T) and nutrient input from the dikes nearby. Freshwater discharge seemed to cause winter time increase of Diatoms (February) and summer time increase of Dinoflagellates at surface (July to August). Structural change in cell size with time was also found in Diatom. Zooplankton community structure was also changed with season probably due to the food concentration, seawater temperature and salinity (S). From principal component analysis (PCA) of zooplankton distribution, it was postulated that seasonal environmental changes such as T and S could explain about 32% of variability in zooplankton distribution along with phytoplankton cell numbers, while freshwater discharge could explain about 17%. Comparing with past data of 1985-1986, 1991-1992, the distributional patterns and percent composition of major species, Acartia hongi, Paracalanus parvus sensu lato and Centropages abdominalis, were similar. However, the abundances have been increased more than three times. The composition of other taxa than copepods showed significant changes.

The Gram-Stain Characteristics of the Bacterial Community as a Function of the Dynamics of Organic Debris in a Hypereutrophic Lake (과 부영양형 호수의 유기물 변동에 따른 박테리아 군집의 그램 염색 특성)

  • Kang, Hun
    • 한국해양학회지
    • /
    • v.24 no.3
    • /
    • pp.148-156
    • /
    • 1989
  • This investigation was performed in eutrophic lake within the framework of a series of studies to evaluate the significance of gram reaction for both bacterioplankton and attached bacteria in the dynamics of organic materials at various aquatic ecosystems. In Lake Kasumigaura as a representative of the highly eutrophic freshwater environments, the gram-stain characteristics of the bacterial community changed with the influx of pulses of phytoplankton, as those in the meso trophic environments. The predominency of the gram-negative forms in the bacterial community was about 57% for bacterioplankton and about 53% for attached bacteria. The statistical analysis of the difference of these two distributions showed that these communites were different. Both gram-negative and gram-positive bacteria attached to particles were shown to effect the formation and degradation of particulate organic matter. Gram-negative bacteria plankton participate exclusively in the dynamics of dissolved organic matter.

  • PDF

Effects of Fish on the Grazing Pressure of Zooplankton in the Artificial Mesocosms (인공메소코즘에서 동물플랑크톤의 섭식압에 대한 어류의 영향)

  • Im, Ji Hyeok;Son, Se-Hwan;Kim, Jin Young;Oh, Min Woo;Nam, Gui-Sook;Song, Younghee;Lee, Ok-Min;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.776-783
    • /
    • 2011
  • In a natural water body, a useful ecotechnology to reduce standing crops of phytoplankton is to strengthen the top-down force of zooplankton. However, the predation of fish for zooplankton can make the force weak. This study was conducted to find out the effect of fish on the grazing pressure of zooplankton in the mesocosms established in a eutrophic stream (Kyongan Stream) from October to November in 2010. In the corral with fish, chlorophyll a concentration increased, and a small size cladoceran Bosmina longirostris was dominant. In the corral without fish, chlorophyll a concentration decreased along with the domination of a large cladoceran Daphnia galeata and a large copepod Eudiaptomus japonicus. The size-selective predation of fish appeared to miniaturize the zooplankton community, to narrow their food-size spectrum, and to weaken the top-down force.

The distinct characteristics of phytoplankton growth response and their community structure following seven different nutrients addition in spring season of Jinhae Bay (춘계 진해만에서 농도 구배로 첨가한 영양염에 의한 식물플랑크톤 성장반응과 군집구조의 명확한 특징)

  • Son, Moonho;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6567-6574
    • /
    • 2015
  • In order to estimate the characteristics of the growth and composition of phytoplankton according to the available nutrients, we added nitrate (0, 1, 5, 10, 20, 50, $100{\mu}M$) and phosphate (0, 0.1, 0.5, 1, 2, 5, $10{\mu}M$) to field samples in a eutrophic site (St. 1) and an oligotrophic site (St. 22) in 2010 as well as a eutrophic site (St. 1, 5), a mesotrophic site (St. 19), and an oligotrophic site (St. 22) in 2011 at Jinhae Bay, Korea. The phytoplankton growth in the areas with additional nitrates and phosphates on St. 1 were significantly different from the control (One-way ANOVA:P<0.01). The dominant species at St. 1 in 2010 were Heterocapsa triquetra and Pseudo-nitzchia spp., to which nitrate and phosphate were added, respectively. The dominant species at St. 22 in 2010 differed between treatment conditions as follows: nitrate treatment Chaetoceros spp. (${\leq}10{\mu}M$), Thalassiosira spp. ($20{\mu}M$), and Pseudo-nitzchia spp.(${\geq}50{\mu}M$) for nitrate treatment; Cylindrotheca spp. ($2{\mu}M$) and Pseudo-nitzchia spp. ($5{\mu}M$) for phosphate treatment. Phytoplankton growth in 2011 according to the added nutrient were significantly different with treatment concentrations (One-way ANOVA: P<0.01). Moreover, the beginning of exponential growth in phytoplanktons was different between the eutro-mesotrophic sites (St. 1, 5, and 19) and the oligotrophic sites (St. 22) on day 2 and day 6 respectively. This implies that phytoplankton growth in the low nutrient condition may be retarded. The dominant species at St. 1 were Eucampia spp. and Chaetoceros spp. in the low nutrient treatment compared to Skeletonema spp., and Thalassiosira spp in the high nutrient treatment. The dominant species at St. 5 and St. 19 were mostly Skeletonema spp. and Chaetoceros spp. However, the dominant species at St. 22 was Thalassiosira spp.. The results of this study showed that phytoplankton growth and composition were different in areas with different nutrient characteristics resulting from the additional nutrients. Therefore, the nutrients additional algal assay could be indirectly explained why the biomass and composition of phytoplankton in Jinhae Bay has shown spatial differences.

Seasonal phytoplankton dynamics in oligotriphic offshore water of Dokdo, 2018 (2018년 독도 주변 빈영양 수괴에서 계절별 식물플랑크톤 동태)

  • Lee, Minji;Kim, Yun-Bae;Kang, Jung Hoon;Park, Chan Hong;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • To investigate the characteristics of seasonal environment and phytoplankton community structure in the coastal area of Dokdo, a survey of Dokdo around waters was conducted during the four seasons. Phytoplankton of 4 phylum 72 species in four seasons were collected in Dokdo around water. The seasonal mean abundance of phytoplankton were $3.32{\times}10^4cells\;L^{-1}$ in winter, $1.04{\times}10^4cells\;L^{-1}$ in spring, $0.28{\times}10^4cells\;L^{-1}$ in summer, and $4.86{\times}10^4cells\;L^{-1}$ in autumn in Dokdo around water. During winter, the diatoms Chaetoceros spp. had dominated. During spring, when the nutrients in the euphotic layer were depleted, the nano-flagellates and Cryptomonas appeared at surface layer. In summer, the abundance of phytoplankton was relatively low, which lead to occurrence of diatoms such as genus of Chaetoceros, Rhizosolenia, and Skeletonema. In autumn, Pseudo-nitzschia spp. was the most dominant species and tropical species such as Amphisolenia sp. and Ornithocercus magnificus were observed, implying that they may have introduced within warm water current such as Kurosiwo Current. Therefore, although natural phytoplankton communities in the vicinity water of Dokdo are mainly influenced by Tsushima Warm Current branched Kurosiwo Current, their population dynamics was affected on the spatio-temporal change of physicochemical factors by short-term wind events, namely "island effect". Long-term survey research is needed to facilitate food-web response in marine ecosystem associated with phytoplankton biomass and physicochemical factors including the warm water current in oligotrophic offshore water of Dokdo, which may have significant role for sustainable use of Dokdo.

Changes of Zooplankton Community in an Artificial Vegetation Island of Lake Paldang (팔당호에서 인공 수초재배섬 설치에 따른 동물플랑크톤 군집 변화)

  • You, Kyung-A;Park, Hae-Kyung;Byeon, Myeong-Seop;Jeon, Nam-Hui;Choi, Myung-Jae;Yun, Seok-Hwan;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.339-347
    • /
    • 2007
  • Zooplankton community dynamics were studied after establishment of an artificial vegetation island (AVI) in Lake Paldang, from April 2005 to November 2006. There were distinct seasonal and inter-annual changes of total zooplankton abundance at the survey site. Total zooplankton abundance rapidly increased in spring and fall, while it remained low throughout winter. During summer, the dynamics of zooplankton community seemed to be largely affected by hydrological parameters such as, precipitation and inflow. Total zooplankton abundance and biomass below AVI was much higher than that of pelagic zone (L1) in Lake Paldang. Copepoda and cladocera represented the main bulk of the zooplankton community from summer to fall at the both sites. Copepods were more dominant at AVI area, while cladocera were more dominant at pelagic zone (L1). Water quality, prey and habitat condition, species competition between zooplankton seemed to play important roles in dominance of the copepoda and cladocera in zooplankton community at AVI area. Our results conclude that artificial vegetation island provide the stable habitat and besides phytoplankton, diverse food to zooplankton, and consequently influence the diversity and richness of zooplankton community.

Effects of Dissolved Organic Nitrogen on the Growth of Dominant Phytoplankton in the Southwestern Part of East Sea in Late Summer (늦여름 동해 남서해역에서 용존 유기 질소가 우점 식물플랑크톤의 생장에 미치는 영향)

  • Kwon, Hyeong-Kyu;Jeon, Seul-Gi;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2016
  • We investigated the distribution of dissolved nutrients, phytoplankton community structure and utilization of nitrogen compounds by dominant species in the southwestern part of East Sea in September, 2014. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were lower in the surface layer, and concentrations were increased with depth. Dissolved organic nitrogen (DON) and dissolved organic phosphorus were the opposite of dissolved inorganic nutrients. Although DIN DIP ratio in all of the water masses was higher than Redfield ratio (16), DIN : DIP ratio in mixed layer was about 2, indicating that inorganic nitrogen is the limiting factor for the growth of phytoplankton. In particular, DON proportion in dissolved total nitrogen was about 88 % in the mixed layer where inorganic nitrogen is limiting factor. The dominant species Chaeotceros debilis and Prorocentrum minimum were able to grow using DIN as well as DON such as urea and amino acids. Therefore, DON utilization of phytoplankton may play a role as a survival strategy in the DIN-limited conditions of East Sea.

Phytohydrography and the Vertical Pattern of Nitracline in the Southern Waters of the Korean East Sea in Early Spring (춘계 한국 동해 남부해역에서의 식물 수문학적 수역과 질산염약층의 수직양상)

  • Shim, Jae Hyung;Yang, Sung Ryull;Lee, Won Ho
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.15-28
    • /
    • 1989
  • A study on quantitative phytoplankton samples, hydrographic conditions (temperature, salinity, dissolved oxygen), and nutrients has been performed in the southern waters of the Korean East Sea in early spring. Phytoplankton community showed close correlation with hydrographic conditions. This study area could be divided into three phytohydrographic regions; 1) East Korean Warm Water Region (a branch of Tsushima Current), 2) North Korean Cold Water Region, and 3) offshore water region not affected by other two water regions. Vertical distribution of phytoplankton is dependent upon stability of water column and nutrient concentration. Nutrient concentration shows characteristic distribution according to water masses. N/P ratio of ca. 3 in surface layer indicates that nitrogen is the major limiting nutrient in this area. N/P removal ratio was 12.54 ($r^2$ = 0.96), consistent with the Redified ratio. Primary nitrite maxima at the nitracline depths are thought to be formed by phytoplankton exudation. Secondary nitrite maximum was observed in coastal area with dissolved oxygen content of >5.2 ml/l much higher than <0.25 ml/l in other areas. The mechanism of secondary maximum is different from that of other regions, and whether it may be due to in situ degradation of organic matter by bacterial activity is still open to discuss.

  • PDF