• Title/Summary/Keyword: Phytoplankton Biomass

Search Result 249, Processing Time 0.033 seconds

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea (동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6008-6014
    • /
    • 2013
  • This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

Distribution of Phytoplankton Biomass and Nutrient Concentrations in the Barents and Kara Seas during the 1st Korea-Russia Arctic Expedition in August, 2000 (제 1차 한-러 북극해 탐사(2000년 8월) 동안의 바렌츠해와 카라해의 식물플랑크톤 현존량 및 영양염 분포)

  • Kang, Sung-Ho;Chung, Kyung-Ho;Kang, Jae-Shin;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • During the 1st Korea-Russia Arctic Expedition from 3 to 26 August, 2000 phytoplankton biomass and nutrient concentration were measured in the Barents and Kara Seas. Total of 57 surface samples were collected f3r the phytoplankton related measurements. Chlorophyll a (chi a) concentraitons were measured to investigate the relations between physico-chemical factors and phytoplankton biomass distribution. Chl a values ranged from 0.14 to $2.34mg\;m^{-3}$ (mean of $0.65{\pm}0.42mg\;m^{-3}$) over the surface stations. The elevated values of the chi a concentrations $(1.49{\sim}2.34mg\;m^{-3})$ were found in the southeastern Barents Sea near the Pechora River. Nanoplanktonic $(<20{\mu}m)$ phytoflagellates were the important contributors for the increase of the chi a. The nano-sized phytoflagellates accounted for more than 80% of the total chi a biomass in the study area. Mean chi a concentration in the Barents Sea $(0.72{\pm}0.57 mg\;m^{-3})$ was higher than in the Kan Sea $(0.52{\pm}0.45mg\;m^{-3})$, but there was no big difference between two areas. Surface temperatures and salinities ranged from 4.1 to $11.7^{\circ}C$ (mean of $8.8{\pm}1.9^{\circ}C$) and from 23.8 to 32.5psu (mean of $30.3{\pm}1.9^{\circ}C$ psu), respectively. The physical factors were not highly correlated with phytoplankton distribution. It is speculated that the insignificant correlation between phytoplankton biomass and physical factor was due to the same current which introduced similar water mass with higher water temperature and lower salinity into the study area. The mean values of major nutrients such as ammonia, nitrite, nitrate, phosphate, and silicate were $0.42{\pm}0.31{\mu}M,\;0.10{\pm}0.03{\mu}M,\;1.44{\pm}1.03{\mu}M,\;0.35{\pm}0.12{\mu}M,\;10.99{\pm}3.45{\pm}M$, respectively. The relations between phytoplankton biomass and nutrient concentration were not close, indicating that the surface nutrient concentrations during the study seem to be controlled by other physical factors such as input of fresh water (i.e. dilution effects).

Ecological and Biogeochemical Response of Antarctic Ecosystems to Iron Fertilization and Implications on Global Carbon Cycle

  • Bathmann, Ulrich
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.231-235
    • /
    • 2005
  • The European Iron Fertilization Experiment EIFEX studied the growth and decline of a phytoplankton bloom stimulated by fertilising $10km^2$ in the core of a mesoscale $(80{\times}120km)$ cyclonic eddy south of the Antarctic Polar Front with about 2 times 7 tonnes of iron sulphate. The phytoplankton accumulation induced by iron fertilization did not exceed $3{\mu}g\;chl\;a\;l^{-1}$ despite a draw down of $5{\mu}M$ of nitrate that should have resulted in at least double to triple the amount of phytoplankton biomass assuming regular Redfield-ratios for draw down after phytoplankton growth in the Southern Ocean. During EIFEX the fertilized core of the mesoscale eddy evolved to a hotspot for a variety of small and medium sized mesozooplankton copepods. In contrast to copepods, the biomass of salps (Salpa thompson)) that dominated zooplankton biomass before the onset of our experiment decreased to nearly extinction. Most of the species of the rnosozooplankton community showed extremely hiか feeding rates compared to literature values from Southern Ocean summer communities. At the end of the experiment, massive phytoplankton sedimentation reached the sea floor at about 3800m water depth.

Long-Term Variations of Phytoplankton Biomass and Water Quality in the Downstream of Nakdong River (낙동강 하류지역에서 식물 플랑크톤 생체량 및 수질의 장기변동 특성)

  • Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.263-267
    • /
    • 2013
  • Long-term (from 1995 to 2012) data of phytoplankton biomass (chlorophyll-a, Chl-a) and water quality were analyzed to investigate trends of eutrophication in downstream of Nakdong River (Mulgum). Long-term annual average concentration of water quality parameters and phytoplankton biomass at Mulgum showed an decreasing trends for 18 years. Phytoplankton biomass was high from annually December to March. Trophic state was evaluated as the eutrophic state annually from 1995 to 2012 by TSI (trophic state index) by Aizaki. From the results of simple regression analysis, correlation coefficient between Chl-a concentration and BOD concentration was high ($r^2$ = 0.82).

Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.390-401
    • /
    • 2006
  • This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.

Analysis of the Lower Trophic Level of the Northern East China Sea Ecosystem based on the NEMURO Model (북부 동중국해 생태계의 NEMURO모델에 의한 하위생태계 분석)

  • Lee, Jong-Hee;Zhang, Chang-Ik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.15-26
    • /
    • 2008
  • The NEMURO model is aimed to efficiently understand the interaction among factors of lower trophic level of a marine ecosystem, using data on solar radiation and sea water temperature. In this study, we analyzed the seasonal pattern of nutrients and planktons, and estimated productivity and biomass of planktons from 2002 to 2005. Nutrients($NO_3$, $NH_4$, and $Si(OH)_4$) which were used by phytoplankton showed a high concentration before the bloom of phytoplankton. Nutrients (DON, PON, and Opal) which were a byproduct of phytoplankton showed a high concentration in the same period as the bloom of phytoplankton. Both phytoplankton and zooplankton had two peaks in March and August. Estimated phytoplankton biomass from the NEMURO model showed a similar pattern with observed chlorophyll a concentrations. Biomasses of phytoplankton were bigger than those of zooplankton. Annual mean biomasses of small and large phytoplankton were estimated at 30.961 and $14.070\;{\mu}g\;l^{-1}$ respectively. Annual mean biomass of predatory zooplankton was greater than those of small and large zooplankton.

Monthly Variation of Phytoplankton Composition and Water quality in Cupped Oyster Crassostrea gigas Culture Area in Iwon, Korea (이원면 굴, Crassostrea gigas 양식어장의 월별 식물플랑크톤 종조성 및 수질환경 변화)

  • Kim, Su Kyoung;Kim, Byeong Ho;Oh, Eun Kyoung;Song, Gi Chul;Park, Soung Yun;Hahn, Ki Yeon;Lim, Hyun Jeong
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2014
  • Phytoplankton species composition and ecological index (diversity, evenness, richness and dominance) were analysed from April 2013 to March 2014 at 10 stations of cupped oyster, Crassostrea gigas culture area in Iwon coast, Korea. Seasonal and positional variation of phytoplankton standing crops, biomass, dominant species and water quality were distinctively different according to occasionally inflow of Iwon dam reservoired water. The composition of phytoplankton species were Bacillariophyceae 98, Dinophycease 22, Chlorophycease 13, Cyanophyceae 8, Silicofalgellate 4, Euglenophyceae 2, Cryptophyceae 1 species. The most dominant species was Bacillariophyceae as 64.0%. The highest biomass of phytoplankton recorded in September as $40,910{\times}10^3$ cell/L at the station 1, near from inland water inflow area. Ecological indices (diversity, richness, evenness, and dominance index), used for structural change of phytoplankton community and water quality (temperature, dissolved oxygen, salinity) showed difference of spatiotemporal property also.

Growth of the Indigenous Red-tide Phytoplankton Assemblage with the Addition of Limiting Nutrients (제한영양염 첨가에 따른 자생 적조 식물플랑크톤의 증식)

  • Lee, Young-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.961-966
    • /
    • 2006
  • An algal assay procedure using an indigenous phytoplankton assemblage was tested to estimate the propagation of red tide phytoplankton species and determine the optimal time interval at which to measure growth yield in eutrophic marine waters where red tides frequently occur. Various red tide phytoplankton species were propagated on a large scale by adding nitrogen or phosphorous. This procedure was useful for estimating the limiting nutrient, elucidating the mechanisms underlying red tides, and determining the levels of increases in organic matter in eutrophic coastal waters. The algal assay using indigenous C. polykrikoides showed that this species did not always propagate, apparently because of very low concentrations of trigger elements that are necessary for its growth, rather than as a result of other environmental characteristics, e.g., water temperature or stress from sampling. In the winter, when water temperatures are lower than in spring, summer, or autumn, maximum propagation and the limiting nutrient could be estimated by measuring phytoplankton biomass at 2 - 3-day intervals. However, in the other seasons, when water temperatures are higher, phytoplankton biomass should be measured at 2-day intervals. In particular, daily monitoring will be required to determine precise growth yields in warm seasons.

Spatial and Temporal Variability of Phytoplankton in Relation to Environmental Factors in Youngil Bay (영일만 수질환경과 식물플랑크톤의 시·공간적 분포)

  • Shim, Jeong-Min;Kwon, Ki-Young;Jeong, Hee-Dong;Choi, Yong-Kyu;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • We investigated the spatial and temporal variations of phytoplankton in Youngil Bay as well as the effect of water physico-chemical parameters. Water samples at three stations were collected and measured monthly from May to November in 2010. The taxa of phytoplankton observed in this study were classified as 33 Bacillariophyceae, 23 Dinophyceae, 1 Euglenophyceae, 2 Crysophyceae and 1 Cryptophyceae. The highest biomass of phytoplankton was observed at inner station in September, which was characterized high concentration of dissolved inorganic phosphate(DIP) in surface water after rainfall. Nutrient concentrations, chlorophyll-a and phytoplankton biomass values showed the marked trend to decrease from the inner bay to the outer bay. Pearson's correlation co-efficient between salinity and other water parameters including chlorophyll-a, pH and DIP showed the strong negative relationship r=-0.82, r=-0.78 and r=-0.75 (p<0.01), respectively. These results indicate that the water quality of Youngil Bay could be stimulated by nutrient enriched input from Hyeogsan River discharge, and the spatial and temporal distribution of phytoplankton biomass principally limited to DIP concentration from Hyeogsan river.

Grazing Rates of Rotifers and Their Contribution to Community Grazing in the Nakdong River

  • Kim, Hyun-Woo;Hwang, Soon-Jin;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.337-342
    • /
    • 1999
  • Rotifer grazing rates in both species and community levels on bacteria and phytoplankton were determined by using representative models (fluorescent beads: 0.75$\mu m$ for bacteria and 10 $\mu m$ for phytoplankton) at biweekly intervals. One-year study at the lower part of the Nakdong River (Mulgum) indicated that the seasonal pattern of rotifer biomass was similar to that of total zooplankton biomass. Total mean biomass of rotifers was significantly higher than that of other groups (rotifers, 148$\pm $327 $\mu g$C/l; cladoceran. 25$\pm 69$$\mu g$C/l; copepodids. 58$\pm 159$$\mu g$C/l). For laboratory grazing experiments. mean specific filtering rate (SFR: $ml\cdot \; l^{-1}\cdot \; day^{-1}$) for rotifers varied from 0.001 to 0.726, and > 90% individuals of rotifer species took up fluorescent microspheres. The high SFRs were achieved by Brachionus angularis, B. calyciflorus, and Filinia longiseta. Community filtering rates (CFRs, $ml\cdot \; l^{-1}\cdot \; day^{-1}$) varied in the range from 2 ~ 1,670. Rotifer filtering rates on phytoplankton were much higher than bacterial filtering rates, especially in the late growing season (May. June, and November). Rotifers appear to be important in transferring both bacterial and phytoplankton carbon to higher trophic levels at the lower Nakdong River.

  • PDF