• Title/Summary/Keyword: Phytophthota capsici

Search Result 1, Processing Time 0.016 seconds

A Multi-microbial Biofungicide for the Biological Control against Several Important Plant Pathogenic Fungi (진균성 식물병해 방제를 위한 항생물질 생산 길항미생물의 복합제제화)

  • Jung, Hee-Kyoung;Ryoo, Jae-Cheon;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.40-47
    • /
    • 2005
  • In order to develop a multi-microbial biofungicide against several important plant pathogenic fungi, strains were isolated from the phtophthora blight suppressive red-pepper field soil of Gyeongsangbuk-do, Korea. Strains AY1, AY6, AB1, BB2 and F4, which had strong antagonistic ability against Phytophthota capsici and Fusarium oxysporum, were selected for their involvement with strains of biocontrol fungicide. There were no antagonism among the selected strains and were compatible for making the biofungicide. Their antagonistic mechanisms, except for strain BB2, were an antibiosis by the production of antibiotic, while BB2 produced not only an antibiotic but also cellulase as an antagonistic mechanism against blight causing P. capsici. They were identified as Halobacterium sp. AB1, Xenorhadus sp. AY1, Bacillus sp. AY6, Bacillus sp. BB2, Zymomonas sp. F4 by various cultural, biochemical test and $Biolog^{TM}$ System 4.0. The highest levels of antifungal antibiotic could be produced after 48 hrs of incubation under the optimal medium which were 0.1% galactose, 0.1% $NaNO_2$, 5 mM $Na_2{\cdot}HPO_4$ (pH 5.5). The cultured multi-microbial biofungicide showed strong biocontrol activity against bacterial wilt disease and fusarium wilt disease in cucumber and tomato fields.