• Title/Summary/Keyword: Phytophthora rot

Search Result 129, Processing Time 0.023 seconds

Phytophthora Root Rot of Ligularia fishcheri Caused by P. drechsleri (Phytophthora drechsleri에 의한 곰취 역병)

  • 권순배;지형진;방순배;이경국;홍정기
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.58-60
    • /
    • 1999
  • Cultivation of a native wild vegetable, Ligularia fischeri, is hampered by Phytophthora sp. Infected plants showed wilt and eventual death due to rots on the root and basal portion. Eight isolates collected were all identified as P. drechsleri based on their mycological characteristics. The fungi showed relatively strong pathogenicity to L. Fischeri, mild to Aster scaber and Codonoposis lanceolata, and none to Circium setidens and Pimpinella brachycarpa. This is the first report of Phytophthora root rot on wild vegetables in Korea.

  • PDF

Phytophthora Rot on Luffa cylindrica Caused by Phytophthora nicotianae

  • Kwon Jin-Hyeuk;Jee Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.211-214
    • /
    • 2006
  • In 2004 and 2005, Phytophthora rot on Luffa cylindrica which had not been reported in Korea occurred in the experimental field at Gyeongsangnam-do Agricultural Research and Extension Services. The disease initiated on leaves and fruits of the plant with small watersoaked dark brown spots and progressed rapidly. The causal pathogen isolated from diseased tissues was identified as a Phytophthora sp. because of aseptate mycelia and zoospores released directly from sporangia. The fungus grew well on PDA and 10% V-8 juice agar showing an arachnoid or rosaceous colony pattern. Sporangia formed abundantly in water and were conspicuously papillate, noncaducous, ovoid to globose, and sized $26\sim62\times19\sim38{\mu}m$. The fungus was heterothallic as producing sexual reproduction structures only when mated with only A2 standard mating type strain. Oogonia and oospores were spherical, smooth walled, and measured as $20\sim28{\mu}m\;and\;16\sim24{\mu}m$, respectively. Oospores were aplerotic and antheridia were amphigynous, unicellula and spherical. Chlamydospores were globose and $20\sim38{\mu}m$ in diameter. Optimum temperature for growth was around $28\sim30^{\circ}C$. The fungus caused similar symptoms on artificially inoculated plant and could be re-isolated thereby proving Koch's postulation. Based on the mycological criteria investigated in this study, the causal fungus of Luffa sylindrica rot was identified as Phytophthora nicotianae. This is the first report of Phytophthora rot of Luffa cylindrica caused by P. nicotianae in Korea.

Phytophthora Foot Rot of Wasabi Caused by Phytophthora pseudocryptogea

  • Young-Ju Nam;Seung-Yeol Lee;Youn-Gi Moon;Weon-Dae Cho;Wan-Gyu Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.249-254
    • /
    • 2022
  • In June 2021, foot rot symptoms were observed in wasabi (Eutrema japonicum) plants growing in vinyl greenhouses of the Alpine Agricultural Experiment Station, Wild Vegetable Research Institute, in Taebaek, Gangwon Province, Korea. Diseased plants displayed black soft rot of crowns and petioles at the soil line and wilted. The incidence of diseased plants was 2-10% in four out of five vinyl greenhouses investigated. Eight fungal isolates were obtained from diseased plants. All the isolates were identified as Phytophthora pseudocrytogea based on their morphological characteristics and phylogenetic analysis. Three isolates of P. pseudocrytogea were used for pathogenicity test on wasabi plants via artificial inoculation. The pathogenicity of the isolates was confirmed in the inoculated wasabi plants. The symptoms shown by the inoculated plants were similar to those observed in plants from the investigated vinyl greenhouses. This is the first report of P. pseudocryptogea causing Phytophthora foot rot in wasabi.

First Report of Phytophthora palmivora in Cheju Island as the Causal Pathogen of Phytophthora Crown Rot of Cymbidium (제주도에서 처음으로 발생한 Phytophthora palmivora에 의한 심비디움 역병)

  • 홍순영;지형진;현승원
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.725-728
    • /
    • 1998
  • Phytophthora crown rot of cymbidium was observed in Cheju island since June of 1996. The disease initiated at the basal portion of infected plant progressed upward to lower leaves. Soon after distinct water-soaking lesions appeared on lower leaves, the plant was wilted, blighted and died. Four orchid farms at Sogwipo out of 16 surveyed in the island were infected by the disease estimating 5~20% infection rates. The causal fungus was identified as P. palmivora based on following distinguishing characteristics. All isolates were heterothallic as A1 types and readily produced chlamydospores with cultural age. Sporangia were conspicuous papillate, ellipsoidal to ovoid, highly deciduous with short pedicels ca. 3~4 ${\mu}{\textrm}{m}$. Koch's rules were satisfied by a pathogenicity test and re-isolation of the fungus from inoculated plants. The pathogen has never been reported in Cheju island previously and its firstly recorded as the cause of Phytophthora crown rot of cymbidium in Korea.

  • PDF

Phytophthora Rot on Sword Bean Caused by Phytophthora nicotianae

  • Jee, Hyeong-Jin;Shen, Shun-Shan;Park, Chang-Seuk;Kwon, Jin-Hyeuk
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-239
    • /
    • 2004
  • Phytophthora rot on sword bean, Canavalia gladiata, which has not been reported yet in Korea, occurred in some fields of Jinju in 2003. The disease develops on the basal stem of the plant, but is also often observed on leaves and pods. Rot lesions begin with small dark brown spots and as these are water-soaked, they enlarge rapidly. The magnitude of at the field reached 40%. Abundant sporangia of Phytophthora were formed on the surface of diseased pods and were mummied later. The causal fungus was identified as P. nicotianae with the following mycological characteristics: Sporangium-readily formed in water, papillate, noncaducous, ovoid to spherical, 24-58 (L) ${\times}$ 22-35 (W) in size; Oogonium-spherical, smooth walled, and 22-30; Oospore- aplerotic, spherical, and 18-24; Antheridium- amphigynous, unicellula, and spherical; Chlamydospore- abundant, spherical, and 25-35; Sexuality- heterothallic, and A1 or A2; Optimum growth temperature- about 28$^{\circ}C.$ The fungus showed strong pathogenicity to sword bean. Symptoms similar to those observed in the fields appeared 2 days and 4 days after inoculation with and without wound on pods. This is the first report of Phytophthora rot of sword bean in Korea.

Phytophthora Rot of Broad Bean(Vicia faba) Caused by Phytophthora nicotianae in Korea

  • Kwon, Jin-Hyeuk;Jee, Hyeong-Jin;Shen, Shun-Shan;Chae, Yun-Seok
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.31-33
    • /
    • 2007
  • Phytophthora rot on broad bean(Vicia faba) occurred in the experimental field at Gyeongsangnam-do Agricultural Research and Extension Services from 2004 to 2006. The fungus isolated from the diseased plants grew well on potato dextrose agar and showed an arachnoid or rosaceous colony pattern. Sporangia were conspicuously papillated, noncaducous, ovoid to globose, and $25-64{\times}18-44{\mu}m$ in size. Oogonia and oospores were spherical and measured as 20-32 ${\mu}m$ and 16-28 ${\mu}m$ in size, respectively. Oospores were relatively small and aplerotic. Antheridia were amphigynous, spherical, and unicellula. Chlamydospores were globose and 18-40 ${\mu}m$ in size. Optimum temperature for growth was about $28^{\circ}C$ on potato dextrose agar. The disease occurred in all parts of the plant including roots, stems, leaves and pods in the field. The symptoms similar to those of naturally infected plants were induced by artificial inoculation and the pathogen was re-isolated from the plant. On the basis of mycological and pathological characteristics, the causal pathogen of broad bean rot was identified as Phytophthora nicotianae. This is the first report of Phytophthora rot of broad bean caused by P. nicotianae in Korea.

Phytophthora Foot Rot of Deltoid Synurus Caused by Phytophthora cryptogea

  • Nam, Young-Ju;Oh, Sang-Keun;Kim, Sun Ha;Moon, Youn-Gi;Cho, Weon-Dae;Kim, Wan-Gyu
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.162-165
    • /
    • 2022
  • Foot rot symptoms were repeatedly observed on plants of deltoid synurus (Synurus deltoides) growing in a field of the Wild Vegetable Research Institute located in Pyeongchang, Korea during disease surveys in July 2020 and June 2021. The symptoms appeared as wilting of the plant leaves, and the plant stems and petioles at or above the soil line turned dark and rotted. The incidence of diseased plants in the field was 5-10%. Five isolates of Phytophthora sp. were obtained from lesions of the diseased plants and investigated for their morphological and molecular characteristics. All the isolates were identified as Phytophthora cryptogea based on the morphological and molecular characteristics. Three isolates of P. cryptogea were tested for pathogenicity on deltoid synurus plants using artificial inoculation. All the tested isolates caused foot rot symptoms on the inoculated plants. The symptoms were similar to those observed in plants from the field investigated. To our knowledge, this is the first report of P. cryptogea causing Phytophthora foot rot in deltoid synurus.

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

Crown Rot of Strawberry (Fragaria ananassa) Caused by Phytophthora cactorum (Phytophthora cactorum에 의한 딸기 역병)

  • 임양숙;정기채;김승한;박선도
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.735-737
    • /
    • 1998
  • A severely wilting of strawberry caused by a Phytophthora sp. has occurred houses after planting in vinyl-houses field at Ssanglim and Anlim areas Kyungbuk in Korea from October in 1997. Phytophthora sp. isolated from diseased tissues of the crown of strawberry. Browning rot of inner crown and root resulted in wilt and eventual death of the plant. The causal fungus was identified as Phytophthora cactorum. Sporangia were ovoid, conspicuously papillate, caducous and measured 30.0~56.6$\times$23.8~35.2 (av. 39.3~29.9) ${\mu}{\textrm}{m}$. Sexuality of the fungus was homothallic. Oogonia were sperical and 23.3~32.3 (av. 29.0) ${\mu}{\textrm}{m}$ in size. Most ahteridia were paragynous and measured av. 10.2~12.2 ${\mu}{\textrm}{m}$. Cardinal temperature for growth at minimum, optium, maximum were recorded at 7, 20~25, and 32$^{\circ}C$, respectively. The fungus show strong pathogenicity to strawberry. This is the first report of strawberry caused by Phytophthora cactorum in Korea.

  • PDF

Fruit Rot of Peach (Prunus persica) Caused by Phytophthora cactorum (Phytophthora cactorum에 의한 복숭아 과일역병)

  • 임양숙;정기채;지형진;김진수;여수갑
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.99-101
    • /
    • 1998
  • A severe brown rot on peach fruit caused by a Phytophthora sp. has occurred at peach orchards in Taegu of Korea from late June to early August in 1997. Infected fruits showed irregularly round or circular water soaking brown regions. In the severe case, fruits were entirely rotten and surface of the fruits were wrinkled. Occasionally, white mycelia and abundant sporangia were developed on the surface of fruit. Inner tissues of the fruits were also discolored to brown. The causal fungus was identified as Phytophthora cactorum based on following characteristics. Sporangia were ovoid, conspicuously papillate, caducous and measured as 28.4~48.1$\times$21.9~37.2 (av. 39.9$\times$30.4) ${\mu}{\textrm}{m}$. Sexuality of the fungus was homothallic. Oogonia were 25.0~34.0 (av. 29.9) ${\mu}{\textrm}{m}$ in size. Most antheridia were paragynous and measured av. 10.5$\times$13.0 ${\mu}{\textrm}{m}$. Optimum temperature for mycelia growth was around 25~3$0^{\circ}C$. However none of the isolates grew under 7$^{\circ}C$ and over 35$^{\circ}C$. The fungus revealed high pathogenicity to fruits, shoots and leaves of peach, apple and pear with different degrees. Phytophthora fruit rot of peach caused by Phytophthora cactorum has not been reported in Korea previously.

  • PDF