• Title/Summary/Keyword: Phytanic Acid

Search Result 3, Processing Time 0.016 seconds

Effect of phytol in forage on phytanic acid content in cow's milk

  • Lv, Renlong;Elsabagh, Mabrouk;Obitsu, Taketo;Sugino, Toshihisa;Kurokawa, Yuzo
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1616-1622
    • /
    • 2021
  • Objective: Bioactive compounds in ruminant products are related to functional compounds in their diets. Therefore, this study aimed to explore the effect of forage sources, Italian ryegrass (IR) silage vs corn silage (CS) in the total mixed ration (TMR), on milk production, milk composition, and phytanic acid content in milk, as well as on the extent of conversion of dietary phytol to milk phytanic acid. Methods: Phytanic acid content in milk was investigated for cows fed a TMR containing either IR silage or CS using 17 cows over three periods of 21 days each. In periods 1 and 3, cows were fed CS-based TMR (30% CS), while in period 2, cows were fed IR silage-based TMR (20% IR silage and10% CS). Results: The results showed that there were no differences in fat, protein, lactose, solids-not-fat, somatic cell count, and fatty acid composition of milk among the three experimental periods. There were no differences in the plasma concentration of glucose, triglycerides, total cholesterol, and nonesterified fatty acids among the three experimental periods, while the blood urea nitrogen was higher (p<0.05) in period 2. The milk phytanic acid content was higher (p<0.05) in period 2 (13.9 mg/kg) compared with periods 1 (9.30 mg/kg) and 3 (8.80 mg/kg). Also, the phytanic acid content in the feces was higher (p<0.05) in period 2 (1.65 mg/kg dry matter [DM]) compared with period 1 (1.15 mg/kg DM), and 3 (1.17 mg/kg DM). Although the phytol contents in feces did not differ among the three feeding periods, the conversion ratio from dietary phytol to milk phytanic acid was estimated to be only 2.6%. Conclusion: Phytanic acid content in cow's milk increases with increasing phytol content in diets. However, phytol might not be completely metabolized in the rumen and phytanic acid, in turn, might not be completely recovered into cow's milk. The change of phytanic acid content in milk may be positively correlated with the change of phytol in the diet within a short time.

Neonatal Adrenoleukodystrophy Presenting with Neonatal Seizure (경련을 동반한 신생아 부신백질이영양증)

  • Shin, Young-Lim;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • Disorders resulting from defects in peroxisomal biogenesis include Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. The three diseases are now considered as a continuum of clinical features. Neonatal adrenoleukodystrophy is intermediate between Zellweger syndrome and infantile Refsum disease in severity, and is characterized by profound hypotonia, intractable seizures and premature death. We report a cases of neonatal adrenoleukodystrophy presenting with neonatal seizure and hypotonia. At the age of 43 months, she had clinical evidence of adrenal insufficiency with skin hyperpigmentation and electrolyte imbalance. She was diagnosed having neonatal adrenoleukodystrophy based on abnormally high levels of plasma very long-chain fatty acids, pipecolic acid and phytanic acid.

  • PDF

A Case of Rhizomelic Chondrodysplasia Punctata Type I (Rhizomelic Chondrodysplasia Punctata I형 1례)

  • Kim, Dal Hyun;Kwon, Young Se;Jun, Yong Hoon;Hong, Young Jin;Son, Byoung Kwan;Yoon, Hye Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.12
    • /
    • pp.1585-1590
    • /
    • 2002
  • Rhizomelic chondrodysplasia punctata(RCDP) is a rare autosomal recessive disorder clinically characterized by symmetrical shortening of the proximal limbs, contractures of joints, a typical dysmorphic face, cataracts, and itchyosis. Patients with RCDP can be subdivided into three subgroups based on biochemical analysis and complementation studies. RCDP type I results from mutations in the PEX7 gene encoding the peroxisomal targeting signal type II(PST2) receptors and presents with both a defect in plasmalogen biosynthesis and phytanic acid oxidation. RCDP type II is deficient in the activity of dihydroxyacetonephosphate acyltransferase(DHAP-AT). RCDP type III is deficient in alkyl-dihydroxyacetonephosphate synthase(alkyl-DHAP). We report a case of RCDP type I which was confirmed with biochemical study, fibroblast culture, and gene study.