• Title/Summary/Keyword: Physiological signal

Search Result 429, Processing Time 0.03 seconds

$Na^+-K^+$ ATPase: Regulation by Signal Transduction Pathways in Cardiac Myocytes

  • Lee, Chin-Ok
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.9-11
    • /
    • 2002
  • Plasma membrane Na$^{+}$-K$^{+}$ ATPase (pump) is an essential component to maintain asymmetrical ion distribution across cell membrane. The Na$^{+}$-K$^{+}$ ATPase was discovered by Jens C. Skou in 1957 and since then physiological and biochemical properties of the enzyme have been extensively studied. Jens C. Skou was awarded the 1997 Nobel Prize in chemistry for his discovery of the Na $^{+}$ - $K^{+}$ ATPase.(omitted)

  • PDF

Bilateral Striopallidodentate Salcinosis on CT and MRI : Case Report (양측성 선조-담창-치상액 석회증의 전산화단층촬영과 자기공명영상 소견 : 증례보고)

  • Lee Jong Deok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.621-625
    • /
    • 2004
  • Bilateral striopallidodentate calcinosis, popularly referred to as Fahr's disease, is a disorder radiologically characterized by bilateral calcifications of the basal ganglia, thalami, dentate nuclei of the cerebellum, and the white matter of the cerebral hemisphere without serum calcium-phosphorus metabolism and related endocrinologic abnormalities. Intracranial calcifications are easily visible as high-density on CT. On magnetic resonance images, the calcifications exhibit different signal intensities. The differences in signal intensity are thought to be related to the stage of the disease, differences in calcium metabolism, and the volume of the calcium deposit. Based on literature review, I report the case of a 63 year man with bilateral symmetrical calcification in the basal ganglia, dentate nuclei of the cerebellum, and the white matter of the cerebral hemisphere who present a 5 year history of progressive dysarthria associated with left thalamic infarction.

A Study of GSR Signal Processing for Viral Reality System for Treatment of Mental Illness (가상현실 정신질환 치료시스템을 위한 GSR 신호분석에 관한 연구)

  • Ryu, Jong-Hyun;Beack, Seung-Hwa;Paek, Seung-Eun;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2693-2695
    • /
    • 2004
  • Recently A virtual environment provides patient with stimuli which arouses phobia, and exposing to that environment makes him having ability to over come the fear. ECG and HRV are used in most virtual reality system. GSR is electrical impedance of biological tissues and the changes in impedance accompanying physiological activity. GSR is better than ECG or HRV for explaining mental states in other study. In this study, we will analysis GSR signal when a acrophobia patient and a normal is on high floor.

  • PDF

Estimation of Stress Status Using Bio-signals and Fuzzy Theory (생체신호와 퍼지이론을 이용한 스트레스 평가에 관한 연구)

  • Sin, Jae-U;Yun, Yeong-Ro;Park, Se-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.121-131
    • /
    • 1999
  • There have been many questionnaires, catecholeamins analysis and bio-signal analysis to analyze human stress condition through out the years, and especially researches in bio-signal analysis have been actively increasing. The purpose of our research is Quantitative analysis of stress with synthesis of bio-signals. The stress status was estimated using the bio-signals and fuzzy theory which combines these signals and physiological knowledge. Stress was estimated by a 'coin-stacking' experiment with two type-relax and stress status. To do the experiment EMG, respiration, periphery temperature, heart rate and skin conductances were used to evaluate human stress stages. The system was tested to 10 healthy persons and achieved a template of a stress progress and stress variations were classified to 4 steps by continuous or rising status of stress progress.

  • PDF

A Modelling of Normal and Abnormal EMG Silent Period Generation of Masseter Muscle (교근에서의 정상 및 비정상 근전도 휴지기 발생 모델링)

  • Kim Tae-Hoon;Jeon Chang-Ik;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • This paper proposes a model of SP(silent period) generation in masseter muscle by means of computer simulation. The model is based on the anatomical and physiological properties of trigeminal nervous system. In determining the SP generation pathway, evoked SPs of masseter muscle after mechanical stimulation to the chin are divided into normal and abnormal group. Normal SP is produced by the activation of mechanoreceptors in periodontal ligament. The activation of nociceptors contributes to the latter part of normal SP, abnormal extended SP is produced. As a result, the EMG signal generated by a proposed SP generation model is similar to both real EMG signal including normal SP and abnormal extended SP with TMJ patients. The result of this study have shown differences of SP generation mechanism between subjects both with and without TMJ dysfunction.

Feature Selecting Algorithm Development Based on Physiological Signals for Negative Emotion Recognition (부정감성 인식을 위한 생체신호 기반의 특징 선택 알고리즘 개발)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3925-3932
    • /
    • 2013
  • Emotion is closely related to the life of human, so has effect on many parts such as concentration, learning ability, etc. and makes to have different behavior patterns. The purpose of this paper is to extract important features based on physiological signals to recognize negative emotion. In this paper, after acquisition of electrocardiography(ECG), electroencephalography(EEG), skin temperature(SKT) and galvanic skin response(GSR) measurements based on physiological signals, we designed an accurate and fast algorithm using combination of linear discriminant analysis(LDA) and genetic algorithm(GA), then we selected important features. As a result, the accuracy of the algorithm is up to 96.4% and selected features are Mean, root mean square successive difference(RMSSD), NN intervals differing more than 50ms(NN50) of heart rate variability(HRV), ${\sigma}$ and ${\alpha}$ frequency power of EEG from frontal region, ${\alpha}$, ${\beta}$, and ${\gamma}$ frequency power of EEG from central region, and mean and standard deviation of SKT. Therefore, the features play an important role to recognize negative emotion.

Implementation of Wearable Heart Activity Monitoring System having Modified Bipolar Electrode and Correlation Analysis with Clinical Electrocardiograph(ECG) (수정된 바이폴라 전극을 갖는 착용형 심장활동 모니터링 시스템 구현 및 임상 심전도와의 상관관계 분석)

  • Lee, Kang-Hwi;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Yang, Heui-Koung;Shin, Kun-Su;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1102-1108
    • /
    • 2008
  • Wearable physiological signal monitoring systems are regarded as an important sensing unit platforms in ubiquitous/mobile healthcare application. In this paper, we suggested the modified bipolar electrodes implemented on the portable heart activity monitoring system, which minimized the distance of electrodes formed on a attachable pad. The proposed electrode configuration is useful in mobile measurement environments, but has a disadvantage of reduced amplitude of the heart action potential. In order to overcome the shortcoming of the suggested electrode configuration, we implemented the amplifying circuit to increase the signal-gain and decrease the artifacts. For evaluations, we analyzed the specificity of measured cardiography using the proposed electrodes through the comparing of heart activity monitoring system with standard clinical ECG(lead2) by pearson correlation coefficients. The result showed that the average correlation coefficient is $0.903{\pm}0.036,\;0.873{\pm}0.072$ at V3, V4 chest lead position, respectively. Thus, the modified bipolar electrode is quite suitable to monitor the electrical activity of the heart in the situation of the mobile environment, and could be considered having high similarity with standard clinical ECG.

Immunohistochemistry of Paraffin-embedded Tissues by Super-signal Induction Method (슈퍼시그날 증폭 기술에 의한 파라핀 매몰조직의 면역조직화학염색)

  • Yun Young Gab;Lee Jang Cheon;Jang Seon Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1154-1158
    • /
    • 2004
  • The classical ABC (avidin-biotin peroxidase complex) method for immunohistochemistry in the paraffin-embedded tissues bring into being disadvantage such as low sensitivity of antigen detection and highly background. The biotinyl-tyramide conjugation recently introduced for sensitive immunohistochemistry was applied to light microscopy in paraffin-embedded pancreatic and liver tissues. The protocol consists of an indirect method in which 4-5㎛ tissue sections are reacted successively within a specific primary antibody, followed by a biotinylated secondary antibody, streptavidin-horseradich peroxidase (HRP), and then finally with biotinyl-tyramide. The labeling obtained for insulin and collagen antigen tested in pancreatic and liver tissues, respectively, was found to be highly specific with the labeling for each antigen confined to its particular cellular compartment. In this study, fish (flounder) serum was specially applied to remove nonspecific binding. Background levels and nospecific deposition of the staining were negligible. This results suggest that super-signal induction method by biotinyl-tyramide conjugate can readily applied to antigen detection of the paraffin-embedded tissues.