• 제목/요약/키워드: Physiological abnormal

검색결과 195건 처리시간 0.025초

비강 내 공기유동에 대한 실험 및 전산유동가시화 (Numerical and experimental flow visualization on nasal air flow)

  • 김성균;박준형;휜광림
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.498-501
    • /
    • 2008
  • Knowledge of airflow characteristics in nasal cavities is essential to understand the physiological and pathological aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. In our laboratory, there have been a series of experimental investigations on the nasal airflow in normal, abnormal, and deformed nasal cavity models cavity models by PIV under both constant and periodic flow conditions. In this time normal and several deformed nasal cavity models, which simulate surgical operation, Turbinectomy, are investigated numerically by the FVM general purpose code and PIV analysis. The comparisons of these results are appreciated. Dense CT data and careful treatment of model surface under the ENT doctor's advice provide more sophisticated cavity models. The Davis (LaVision Co.) code is used for PIV flow analysis. Average and RMS distributions have been obtained for inspirational and expirational nasal airflows in the normal and deformed nasal cavities.

  • PDF

신생아에서 칼슘 및 인 대사 평가와 질환 (Calcium and phosphate metabolism and disorders in the newborn)

  • 김혜순
    • Clinical and Experimental Pediatrics
    • /
    • 제50권3호
    • /
    • pp.230-235
    • /
    • 2007
  • In the early neonatal period, the neonate is challenged by the loss of the placental calcium transport and manifests a quick transition, from an environment in which PTHrP plays an important role to a PTH- and 1,25-dihydroxyvitamin D-controlled neonatal milieu. Disturbances in mineral homeostasis are common in the neonatal period, especially in premature infants and infants who are hospitalized in an intensive care unit. In many cases these disturbances are thought to be exaggerated responses to the normal physiological transition from the intrauterine environment to neonatal independence. Some disturbances in calcium and phosphate homeostasis are the result of genetic defects, which in many instances can now be identified at the molecular level. Although fetus develop remarkably normally in the presence of maternal calcium, PTH and vitamin D deficiency, the neonates demonstrate abnormalities that are consequences of the prior abnormal maternal calcium homeostasis. Evaluation and management of hypocalcemia and hypercalcemia in neonate requires specific knowledge of perinatal mineral physiology and the unique clinical and biochemical features of newborn mineral metabolism.

VEGF-VEGFR Signals in Health and Disease

  • Shibuya, Masabumi
    • Biomolecules & Therapeutics
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2014
  • Vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) system has been shown to play central roles not only in physiological angiogenesis, but also in pathological angiogenesis in diseases such as cancer. Based on these findings, a variety of anti-angiogenic drugs, including anti-VEGF antibodies and VEGFR/multi-receptor kinase inhibitors have been developed and approved for the clinical use. While the clinical efficacy of these drugs has been clearly demonstrated in cancer patients, they have not been shown to be effective in curing cancer, suggesting that further improvement in their design is necessary. Abnormal expression of an endogenous VEGF-inhibitor sFlt-1 has been shown to be involved in a variety of diseases, such as preeclampsia and aged macular degeneration. In addition, various factors modulating angiogenic processes have been recently isolated. Given this complexity then, extensive studies on the interrelationship between VEGF signals and other angiogenesis-regulatory systems will be important for developing future strategies to suppress diseases with an angiogenic component.

고소공포증 극복훈련을 위한 가상환경시스템 (Virtual Reality Therapy System for the get over tranining of Acrophobia)

  • 백승은;유종현;백승화;주관식
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.203-209
    • /
    • 2004
  • Virtual Reality(VR) is a new technology which makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. In this paper, we introduced VR into psychotherapy area and developed VR system for the exposure therapy of acrophobia. Acrophobia is an abnormal fear of heights. Medications or cognitive-behavior methods have been mainly used as a treatment. Lately the virtual reality technology has been applied to that kind of anxiety disorders. A virtual environment provides patient with stimuli which arouses phobia, and exposing to that environment makes him having ability to over come the fear. In this study, the elevator stimulator that composed with a position sensor, head mount display, and audio system, is suggested. To illustrate the physiological difference between a person who has a feel of phobia and without phobia, heart rate was measured during experiment. And also measured a person's HR after the virtual reality training. In this study, we demonstrated the subjective effectiveness of virtual reality psychotherapy through the clinical experiment.

  • PDF

Aberrant phosphorylation in the pathogenesis of Alzheimer's disease

  • Chung, Sul-Hee
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.467-474
    • /
    • 2009
  • The modification of proteins by reversible phosphorylation is a key mechanism in the regulation of various physiological functions. Abnormal protein kinase or phosphatase activity can cause disease by altering the phosphorylation of critical proteins in normal cellular and disease processes. Alzheimer' disease (AD), typically occurring in the elderly, is an irreversible, progressive brain disorder characterized by memory loss and cognitive decline. Accumulating evidence suggests that protein kinase and phosphatase activity are altered in the brain tissue of AD patients. Tau is a highly recognized phosphoprotein that undergoes hyperphosphorylation to form neurofibrillary tangles, a neuropathlogical hallmark with amyloid plaques in AD brains. This study is a brief overview of the altered protein phosphorylation pathways found in AD. Understanding the molecular mechanisms by which the activities of protein kinases and phosphatases are altered as well as the phosphorylation events in AD can potentially reveal novel insights into the role aberrant phosphorylation plays in the pathogenesis of AD, providing support for protein phosphorylation as a potential treatment strategy for AD.

고소공포증의 치료를 위한 가상 현실 시뮬레이터의 제작 (The Development of Virtual Reality Therapy(VRT) System for the Treatment of Acrophobia)

  • 백승은;류종현;백승화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권10호
    • /
    • pp.486-493
    • /
    • 2001
  • Acrophobia is an abnormal fear of heights. Medications or cognitive-behavior methods have been mainly used as a treatment. Lately the virtual reality technology has been applied to that kind of anxiety disorders. A virtual environment provides patient with stimuli which arouses phobia, and exposing to that environment makes him having ability to over come the fear. In this study, the elevator stimulator that composed with a position sensor, head mount display, and audio system, is suggested. To illustrate the physiological difference between a person who has a feel of phobia and without phobia, heart rate was measured during experiment. And also measured a person's HR after the virtual reality training and in a real building elevator. In this study, we demonstrated the subjective effectiveness of virtual reality psychotherapy through the clinical experiment.

  • PDF

Infrared Imaging for Screening Breast Cancer Metastasis Based on Abnormal Temperature Distribution

  • Ovechkin Aleck M.;Yoon Gilwon
    • Journal of the Optical Society of Korea
    • /
    • 제9권4호
    • /
    • pp.157-161
    • /
    • 2005
  • Medical infrared imaging is obtained by measuring the self-emitted infrared radiance from the human body. Infrared emission is related to surface temperature and temperature is one of the most important physiological parameters related to health. Though recent applications such as security identification and oriental medicine have provided new fields of biomedical applications, infrared thermography has had ups and downs in its usages in cancer detection. Some of the main difficulties include finding proper applications and efficient diagnostic algorithms. In this study, infrared thermal imaging was used to detect regional metastasis of breast cancer. Our measurements were done for 110 women. From 63 individuals of a Healthy Group and a Benign Breast Disease Group, we developed algorithms for differentiating malignant regional metastasis based on temperature difference and asymmetry of temperature distribution. Testing with 47 cancer patients, we achieved a positive predictive value of $87.5\%$ and a negative predictive value of $95.6\%$. The results were better than for mammogram examination. A proper analysis of infrared imaging proved to be a highly informative and sensitive method for differentiating regional cancer metastasis from normal regions.

A Review on Metabolism and Cancer in Relation with Circadian Clock Connection

  • Merlin Jayalal, L.P.
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.198-210
    • /
    • 2012
  • Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.

Senotherapeutics and Their Molecular Mechanism for Improving Aging

  • Park, Jooho;Shin, Dong Wook
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.490-500
    • /
    • 2022
  • Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. These senescent cells accumulate in many tissues and exhibit diverse phenotypes, such as resistance to apoptosis, production of senescence-associated secretory phenotype, cellular flattening, and cellular hypertrophy. They also induce abnormal dysfunction of the microenvironment and damage neighboring cells, eventually causing harmful effects in the development of various chronic diseases such as diabetes, cancer, and neurodegenerative diseases. Thus, pharmacological interventions targeting senescent cells, called senotherapeutics, have been extensively studied. These senotherapeutics provide a novel strategy for extending the health span and improving age-related diseases. In this review, we discuss the current progress in understanding the molecular mechanisms of senotherapeutics and provide insights for developing senotherapeutics.

Current research status for imaging neuroinflammation by PET

  • Namhun Lee;Jae Yong Choi
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.116-130
    • /
    • 2020
  • The aging society is globally one of biggest issue because it is related with various degenerative brain disease such as dementia, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and cerebrovascular disease. These diseases are characterized by misfolded-protein aggregation; another pathological trait is "neuroinflammation". In physiological state, the resting microglia cells are activated and it removes abnormal synapses and cell membrane debris to maintain the homeostasis. In pathological state, however, microglia undergo morphological change form 'resting' to 'activated amoeboid phenotype' and the microglia cells are accumulated by neuronal damage, the inflammatory reactions induced nerve metamorphosis with a variety of neurotoxic factors including cytokines, chemokines, and reactive oxygen species. Thus, the activated microglia cell with various receptors (TSPO, COX, CR, P2XR, etc.) was perceived as important biomarkers for imaging the inflammatory progression. In this review, we would like to introduce the current status of the development of radiotracers that can image activated microglia.