• Title/Summary/Keyword: Physiological Traits

Search Result 161, Processing Time 0.031 seconds

Induction of Soft Tunic Syndrome by Water Temperature and Physiological and Histological Responses of the Sea Squirt, Halocynthia roretzi (수온에 의한 멍게(Halocynthia roretzi)의 물렁증 유도와 생리 및 조직학적 반응)

  • Shin, Yun Kyung;Park, Jung Jun;Myeong, Jeong In;Kim, Hyejin;Lee, Jung Sick
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.225-233
    • /
    • 2014
  • In this study, we investigated the changes in the physiological and histological traits of a sea squirt (Halocynthia roretzi) with the emergence of the soft tunic syndrome induced by the water temperature control (6, 9, 12, 15, 18, 21, 24 and $27^{\circ}C$). It was observed that the induction rate of the soft tunic syndrome was highest at $15^{\circ}C$, but lowest at $24^{\circ}C$. Based on the tunic color condition and contraction strength, the whole process were classified into 4 stages as S0, S1, S2 and S3. Interestingly, there were significant differences in oxygen consumption and filtration rate were observed during S0-S3. The most distinctive aspects were change of blood cell composition at stage S3, whereas multi-vacuole cell ratio was decreased by 1/2 and morula cell ratio expanded about 10 times during S0-S3. Further, change of organ structure started following the syndrome such as degeneration of epithelial cells, microfilaments, increment in hemocytes and damage in muscle fiber have been detected in tunic, siphon, branchial sac, body wall musculature and pyloric gland. Briefly, our study results indicated that the normal physiological functions of the sea squirt can be affected due to the soft tunic syndrome induced by water temperature.

A Study on Transmission and Transmutation of Disease in "Hwangjenaegyeong(黃帝內經)" ("황제내경(黃帝內經)"에 나타난 병(病)의 전변유형(傳變類型)에 관한 고찰(考察))

  • Kim, Jong-Hyun;Jeong, Chang-Hyun;Baik, You-Sang
    • Journal of Korean Medical classics
    • /
    • v.23 no.2
    • /
    • pp.157-189
    • /
    • 2010
  • Many chapters of the Hwangjenaegyeong[HN] explain the process of transmission and transmutation of disease. The transmission and transmutation process in the HN can be categorized into one between the viscera and bowels, and another of the external pathogenic gi itself. The process between the viscera and bowels indicates the transport of the pathologic burden between each viscera and bowel. This again is categorized into three types. Interpromoting, intercontrolling and that by Saeng-yang(生陽), Sa-eum(死陰). Next, the transport of the pathogenic gi can be categorized into one moving inwards from the exterior according to personal traits, and that according to the three Eum and three Yang. Although there are numerous types of transmission and transmutation, there are two main criteria in understanding the process. First, whether the process is in accordance with the physiological or natural flow of the body. Interpromoting and three Eum three Yang processes are such examples. To follow the physiological flow of the body means to correspond to either the Heaven and Earth or the original physiology of the human body. Therefore, the disease progresses according to a certain date or season. This indicates a partial malfunction in the circulation of the vital energy, which is relatively easy to recover. In contrast, there are processes that go against the physiological flow, for example, intercontrolling transmission and transmutation. This process focuses on the movement of the pathogenic gi rather than the vital gi. The disease progresses regardless of the flow of the vital energy, and sequential functional damage occurs accordingly. Consequently, as the transmission and transmutation continue, formerly passed organs are left damaged, and the whole process is headed towards death. The second criteria for understanding the process is whether it is cyclic or not. To have a cyclic pattern means that the occurrence of a disease and the time of death is not fixed. Transmission and transmutation processes that have a cyclic pattern mostly follow the physiological flow of the body. As a result, they rarely end in deaths, and the process is centered on vital energy. On the other hand, those with acyclic patterns have a fixed occurrence and death point in the course of the disease. They are mostly unnatural processes, found in fatal acute diseases or consumption diseases.

Genotypic Variation of Early Growth Vigor and Indicator Traits for its Indirect Selection in Rice (벼 유모활력의 품종 변이와 간접 선발을 위한 초기생육 지표형질 탐색)

  • Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.429-438
    • /
    • 2007
  • Early growth vigor(EGV) is one of the physiological characteristics that may contribute to the increase of genetic yield potential and radiation use efficiency by closing the canopy earlier. To estimate the genotypic variation of EGV, determine the relationships among the related traits, and identify the rapidly growing genotypes and indirect indicator for selection in breeding program, the evaluation of EGV and EGV-related traits was conducted for a total of 140 rice varieties consisting of 101 Korean, 25 Northern China and 14 IRRI-bred rice varieties in a serial sowing experiment in plastic rain shelter and plastic-covered nursery bed in 2003. EGV defined as the amount of leaf area and/or dry weight produced early in the season and the EGV-related traits such as length and breadth of the $2^{nd}\;and\;3^{rd}$ leaves showed highly significant positive correlation with the embryo and seed weight. Especially, the genotypic variation in the length of the third leaf was explained over 90% of genotypic variation in the seed weight. Owing to a large effect of seed size on EGV and its related traits, vigor measurements were adjusted based on their linear or exponential relationships with seed weight for excluding the seed weight effect. EGV and its related-traits adjusted for seed weight also showed big variation among genotypes. Increased EGV was genetically correlated with increases in breadth and length of early leaves. The broad-sense heritability for EGV was significantly high(81%), but lower than those of leaf breadth(90% for the $2^{nd}$ leaf and 93% for the $3^{rd}$ leaf) and length(87% for the $2^{nd}$ leaf and 89% for the $3^{rd}$ leaf). Significantly positive genetic correlations were found between EGV and the breadth and length of early leaves. The high heritability of early leaf breadth and length coupled with their strong genetic correlation with EGV indicated that the breadth and length of the $2^{nd}\;and\;3^{rd}$ leaf would be used as good indirect indicators for EGV selection in rice breeding program.

The Prospectss and Utilization of Biotechnology for the Improvement of Fruit Breeding (과수육종에 있어 생명공학의 이용 전망)

  • 이돈균;김휘천;신용억;강상조;예병우
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.07a
    • /
    • pp.133-170
    • /
    • 1995
  • The major objectives of fruit breeding lie in improvement of cultivar, easy to be cultivated and of high quality, in order to produce unexpensive, delicious fruit both for fresh fruit market and processing. Recently, fruit breeding in Korea has contributed to breeding of several superior cultivars in major fruit crops, resulting in appreciable improvement in qualities such as skin color, taste and fruit-bearing habit concerned with productivity. In spite of accomplishments mentioned above, the need for both highly disease-resistant cultivars and long-keeping, physiological disorder-resistant cultivars to meet long distance transsportation in the temperate fruit crops of apples, oriental pears, stone fruits such as peaches, and grapes grown in Korea is rapidly pressing more than ever, as cultivars of today susceptible to pests and diseases and vulnerable to physiological disorders are very expensive and time-consuming in post-harvest handling and management. Thus, imporvements made in the above problems through breeding level will lead to the really enhanced productivity in fruit industry. The major impediments of tree size, the long length of juvenile period and the highly heterogeneous genetic composition to the improvement of fruit crops are responsible for the lower amount and rate of improvements of fruit crops as compared to annuals. Considering the expected limitations of the above problems to be solved through conventional breeding methods and strategy, a turning point of breeding a near perfect cultivar would be laid down if innovative breakthroughs in biological technology will be realized in applying some of the techniques of genetic manipulation at the molecular level to the cultivar improvement of fruit crops, such as the selective insertion of DNA carrying genes that govern desirable characteristics. More than anything else, those traits such as fruiting habit deciding productivity, elements of fruit qualities conditioned by monogene, and disease-and pest-resistance of vital importance for successful fruit growing are urgently desired to be improved by advancement of biotechnology for they are more than difficult and need long period to be attained through conventional breeding method.

  • PDF

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

Physiological responses of broiler chickens fed reduced-energy diets supplemented with emulsifiers

  • Oketch, Elijah Ogola;Lee, Jung Woo;Yu, Myunghwan;Hong, Jun Seon;Kim, Yu Bin;Nawarathne, Shan Randima;Chiu, Josh Wen-Cheng;Heo, Jung Min
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1929-1939
    • /
    • 2022
  • Objective: To investigate the physiological effects of exogenous emulsifiers in broiler chickens that were fed tallow-incorporated reduced-energy diets over 35 days. Methods: A total of 256 Ross 308 one-day-old broilers (42.28±0.16 g) were randomly allocated in a 2×2 factorial arrangement to 32 pens with eight chicks per cage. Birds were fed one of four dietary treatments as follows: i) positive control (PCN; energy sufficient diet); ii) negative control (NCN; energy-deficient diet, -100 ME kcal/kg); iii) PCL (PCN plus 0.05% emulsifier); and iv) NCL (NCN plus 0.05% emulsifier). Growth performance was evaluated weekly whereas assessments for the carcass traits, digestibility, some blood metabolites, ileal morphology, and meat quality were measured on d 21 and d 35. Results: Birds fed the NCL diet had higher (p<0.05) body weights, daily gains, daily feed intake, and improved feed efficiency over the entire 35-day period. Improvements (p<0.05) for the ileal digestibility of crude fat, energy, and dry matter commensurate with longer (p<0.05) villus heights were also observed with emulsifiers in the NCL and PCL diets. For the carcass measurements, only the liver weights were increased (p<0.05) with emulsifiers in the supplemented groups. For blood metabolites, higher (p<0.05) lipase levels were noticed with emulsifiers in the NCL and PCL diets. In addition, marginal reductions (p = 0.076; p = 0.095, respectively) were also noted with emulsifiers for the total cholesterol and triglyceride contents on d 35. Regarding meat quality, breast muscle yellowness was increased (p<0.05) with emulsifier use in supplemented groups. Conclusion: Our results suggest that emulsifier supplementation at 0.05% in diets could potentially improve the growth performance and nutrient digestibility of broilers over 35 days. This could compensate for the lower growth performance that could be recorded with fat-incorporated lower-energy diets.

Evaluation of preslaughter losses, meat quality, and physiological characteristics of broilers in response to crating density for the standard of animal welfare and to seasonal differences

  • Myunghwan Yu;Elijah Ogola Oketch;Jun Seon Hong;Shan Randima Nawarathne;Yuldashboy Vohobjonov;Jung Min Heo
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.927-936
    • /
    • 2022
  • The effects of seasonal differences and crating densities on the preslaughter losses, breast meat quality, and physiological indices of broilers were determined. A total of 600 broilers aged 35 days were divided into 10 treatment groups based on five crating densities (10.3, 11.5, 12.8, 14.1, 15.4 birds·m-2) with two seasons (i.e., summer and winter) to give six replicates and were placed at various locations in the truck. The birds were transported in crates having dimensions of 1.0 m × 0.78 m × 0.26 m. The transportation distance was 20 km for 40 minutes (average 30 - 50 km·h-1) during the early morning. The results revealed that broilers transported at densities of 14.1 and 15.4 birds·m-2 recorded lower (p < 0.05) pH, water-holding capacity (WHC), and muscle redness compared to those at densities of 11.5 birds·m-2. Furthermore, higher (p < 0.05) cooking loss was found in birds stocked at more than 14.1 birds·m-2 compared to the other treatments. However, no effect (p > 0.05) with different crating densities on body weight loss, carcass traits, glucose, lactate, or muscle yellowness was observed. Crating density of 14.1 birds·m-2 showed lower (p < 0.05) cortisol contents compared with birds at 10.3 and 15.4 birds·m-2. Winter transportation had higher (p < 0.05) relative breast meat weight, cooking loss, muscle redness, and cortisol contents whereas summer transportation had higher (p < 0.05) glucose and lactate contents in the blood plasma of broilers. In conclusion, the stocking of 12.8 birds·m-2 is recommended to minimize stress responses and undesirable changes that could negatively affect muscle quality.

Heritability Estimation of Haematological Traits in Clonal Lines of Ayu, Plecoglossus altivelis, under Stressed and Hon-Stressed Conditions (스트레스와 비스트레스 조건에서 Clone 은어의 혈액성상에 대한 유전율 추정)

  • Han, Hyon-Sob
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.147-152
    • /
    • 2000
  • Four clonal lines of ayu, Plecoglossus altivelis, were produced through gynogenesis, mixed before hatching and reared communally. After 10 months, a randomly taken sample was subjected to a standardized shallow water stressor. Hematocrit, hemoglobin, red blood cells count (RBC) and mean corpuscular volume (MCV) were obtained from stressed and non-stressed fish. DNA fingerprinting was used to confirm the clonal nature of the organisms and to identified the clonal line to which each fish belonged. 1 observed significant differences between clona] lines mostly in the hematocrit and MCV measured under no-stress conditions. Such differences are suggested to represent mainly genetic variance, on account of the common environment provided to all the experimental groups. The stress response ratio was lower than expected, mainly due to some unexpectedly high non-stress values. Heritability values (h$^2$) were medium to high for the no-stress measurements (mean 0.238) and very low or zero for the stressed groups'traits (excepting one high value of 0.484). 1 conclude that the use of communally reared clonal lines represents a good tool for the characterization of the physiological traits, thus allowing for their utilization as genetic selection criteria.

  • PDF

Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle