• Title/Summary/Keyword: Physiological Function

Search Result 1,220, Processing Time 0.036 seconds

Changes of Heart Rate During Marathon Running (장거리 (마라톤)선수에서의 전 경기중 심박동수의 변화)

  • Kim, In-Kyo;Lee, Jung-Woo;Hah, Jong-Sik;Ryu, Yun-Hee;Choi, Jung-Ok;Kim, Ki-Ho
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.1-12
    • /
    • 1979
  • To evaluate the present status of physical fittness of Korean long distance runners, body fat, pulmonary functions, maximal oxygen intake and oxygen debt were measured in 5 elite marathoners (A group), 6 college student runners (B group) and 3 middle school student runners (C group). After laboratory tests, full course marathon running was performed in 2 elite marathoners during which their heart rates were monitored continuously. The results are summerized as follows: 1) Total body fat in all three groups are in the range of 13-15% of their body weight. 2) In all three groups, average values of various pulmonary functions were within the normal limits, but those of tidal volume were higher and respiratory rate were lower in comparison to normal values. These phenomena may represent respiratory adaptations against training. The average resting oxygen consumptions in A,B and C were $322{\pm}23$, $278{\pm}14$ and $287{\pm}16$m1/min, respectively. 3) In all three groups, resting blood pressures were in the normal range, but the resting heart rate was slightly lower in groups A $(56{\pm}3\;beats/min)$ and B $(64{\pm}2\;beats/min)$ and higher in group C $(82{\pm}9\;beats/min)$ in comparison to normal values. These changes in cardiovascular functions in marathoners may also represent adaptive phenomena. 4) During treadmill running the minute ventilation and oxygen consumption of the runners increased lineally with work load in all three groups. When the oxygen consumption was related to heart rate, it appeared to be a exponential function of the heart rate in all three groups. 5) The average maximal heart rates during maximal work were $196{\pm}3$, $191{\pm}3$ and $196{\pm}5\;beats/min$ for groups A,B and C, respectively. Maximal oxygen intakes were $84.2{\pm}3.3\;ml/min/kg$ in group A, $65.2{\pm}1.1\;ml/min/kg$ in group B and $58.7{\pm}0.4\;ml/min/kg$ in group C. 6) In all three groups, oxygen debts and the rates of recovery of heart rate after treadmill running were lower than those of long ditsance runners reported previously. 7) The 40 km running time in 2 elite marathoners was recorded to be $2^{\circ}42'25'$, and their mean speed was 243 m/min (ranged 218 to 274 m/min). The heart rate appeared to increase lineally with running speed, and the total energy expenditure during 40 km running was approximately 1360.2 Calories. From these it can be speculated that if their heart rates were maintained at 166 beats/min during the full course of marathon running, their records would be arround $2^{\circ}15'$. Based on these results, we may suspect that a successful long distance running is, in part, dependent on the economical utilization of one's aerobic capacity.

  • PDF

Effect of JiaoTeng-Yuan(交藤圓) on Oxidation Stress Caused by D-galactose in Sprague-Dawley Rats (교등원(交藤圓)이 백서(白鼠)의 산화유발(酸化誘發)을 방어(防禦)하는 작용(作用)에 관(關)한 연구(硏究))

  • Lee Song-Shil;Lee Sang-Jae;Kim Kwang-Ho
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.8 no.2
    • /
    • pp.141-156
    • /
    • 2004
  • Objectives : JianTeng-Yuan(交藤圓) is said to be a prescription for preservation of health in ${\ulcorner}$HuaTuo ZhongZangJing(華陀 中藏經)${\lrcorner}$. It is known to have the effect of Bu-Shen(補腎: strengthening kidney) and Yi-Shou(益壽: prolonging the span of one's life). This study investigates whether JTY is effective on inhibition of oxidation stress. Methods : Sprague-Dawley Rats(12-week-old, weight $300{\pm}20g$) were divided into 3 groups. Normal group(n=8) was injected PBS(1ml/body, s.c) at the back neck's skin. Control group(n=8) was injected D-galactose(50mg/kg, 1ml PBS/body, s.c) to induce pathological animals. JTY group was injected the same treatment for the Control group, and fed containing JTY(10%). The whole groups were treated 1 time per day for 6 weeks. After rats were sacrificed and anti-oxidant enzyme(SOD, CAT, G-px) activity, GSH quantity of RBC and tissue(heart, liver and kidney), plasma Vit-C quantity were examined. Besides, the MDA levels of liver and kidney, lipofuscin of heart and endurance of erythrocyte membrane were measured. Results : In the JTY group, RBC's SOD activity decline was halted by 21% of the normal level, compared to the control group ; G-px activity(unit/g of Hb) increased significantly, compared to the normal group ; and the level of Vit-C in plasma increased by 16%. Heart's SOD activity was kept at the same level as that of the normal group ; and CAT activity decline was halted by 26%. Kidney's CAT and G-px activities were kept at the same level as that shown in the normal group, implying the existence of halting effect. Liver also showed a slight halting effect against the decline of anti-oxidant ability, but the effect was not significant(a=0.05). A comparison between the levels of peroxide in SD rats showed that the level of TBARS in plasma increased significantly in the control group and that it was normal in the JTY group. The livers in the JTY group, compared to those in the control group, showed 36% halting effect of the normal level while their kidney's indicated the level significantly lower than the normal level. Heart's lipofuscin increased significantly in the control group, but was alike in both the JTY and the normal groups. Endurance of erythrocyte membrane(%) decreased significantly in the control group while it was kept at the similar level in both the JTY and the normal groups, indicating the halting effect. Conclusions : This study suggests that JTY is effective to defend oxidation stress caused by D-galactose in the animals. It showed that the anti-oxidant ability was maintained and strengthened. On the other hand, it reduced the level of peroxide in animals. In sum, JTY appeared to have the equilibrium normal physiological function in SD rat.

  • PDF

Expression of Neuronal Nitric Oxide Synthase (nNOS) in Developing Rat Kidney (분화중인 흰쥐 콩팥의 요세관에서 nNOS의 발현)

  • Song, Ji-Hyun;Ryu, Si-Yun;Kim, Jin;Jung, Ju-Young
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • Nitric oxide (NO) is an important regulator of renal blood flow, glomerular hemodynamics, and tubule transport processes in the kidney. There is also evidence that NO is involved in cell cycle regulation and mitotic division. During development the nNOS expression pattern differs from that observed in adult animals. However, little is known about temporal and spatial patterns of nNOS expression in the developing kidney. The purpose of this study was to establish the time of expression and the distribution of nNOS in the developing rat kidney. Kidneys from 14-, 16-, 17-, 18-, and 20-day-old fetuses, 1-, 4-, 7-, 14-, and 21-day-old pups, and adult animals were preserved and processed for immunohistochemistry. In the adult kidney, nNOS was detected in the parietal epithelium of Bowman s capsule, macula densa, descending thin limb and inner medullary collecting duct. nNOS immunoreactivity appeared first in the distal tubule anlage at 15 days of gestation, and in all epithelial cells of developing thick ascending limbs (TAL) as well as macula densa of 17- and 18-day-old fetuses. From 20 days of gestation to 14 days after birth, nNOS was expressed in the newly formed cortical TAL, which are located in the medullary ray, whereas in mature TAL of juxtamedullary nephrons, nNOS immunolabeling gradually decreased in intensity and became restricted to the macula densa. In inner medullary collecting ducts, nNOS immunoreactivity appeared first at 7 days after birth in the papillary tip and gradually ascended to the border between outer and inner medulla. In the descending thin limb and parietal epithelium of Bowman's capsule, weak nNOS immunoreactivity was observed at 14 days after birth and labeling gradually increased to adult levels at 21 days after birth. These results suggest that differential expression of nNOS in the developing kidney is an important physiological regulator of renal function during kidney maturation.

Reduction of Mitochondrial Electron Transferase in Rat Bile duct Fibroblast by Clonorchis sinensis Infection (간흡충(Clonorchis sinensis)감염에 의한 흰쥐 담관 섬유모세포 미토콘드리아 전자전달효소의 감소)

  • Min, Byoung-Hoon;Hong, Soon-Hak;Lee, Haeng-Sook;Kim, Soo-Jin;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.89-99
    • /
    • 2010
  • Fibroblasts are the most common cells in connective tissue and are responsible for the synthesis of extracellular matrix components. The fibrosis associated with chronic inflammation and injury may contribute to cholangiocarcinoma pathogenesis, particularly through an increase in extracellular matrix components, which participate in the regulation of bile duct differentiation during development. Mitochondria produce ATP through oxidative metabolism to provide energy to the cell under physiological conditions. Also, mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence and aging. Alternations in mitochondrial structure and function are early events of programmed cell death or apoptosis and mitochondria appear to be a central regulator of apoptosis in most somatic cell. Clonorchis sinensis, one of the most important parasite of the human bile duct in East Asia, arouses epithelial hyperplasia and ductal fibrosis. Isolated fibroblast from the bile ducts of rats infected by C. sinensis showed increase of cytoplasmic process. In addition, decrease of cellular proliferation was observed in fibroblasts which was isolated from normal rat bile duct and then cultured in media containing C. sinensis excretory-secretory product. However, the effects of C. sinensis infection on the mitochondrial enzyme distribution is not clearly reported yet. Therefore, we investigated the structural change of C. sinensis infected bile duct and mitochondrial enzyme distribution of the cultured fibroblast isolated from the C. sinensis infected rat bile duct. As a result, C. sinensis infected SD rat bile ducts showed the features of chronic clonorchiasis, such as ductal connective and epithelial tissue dilatation, or ductal fibrosis. In addition, fibroblast in ductal connective tissue was damaged by physical effect of fibrotic tissue and chemical stimulation. Immunohistochemically detected mitochondrial electron transferase (ATPase, COXII, Porin) was decreased in C. sinensis infected rat bile duct and cultured fibroblast from infected rat bile duct. It can be hypothesized that the reason why number of electron transferase decrease in fibroblast isolated from the rat bile duct infected with C. sinensis is because dysfunction of electron transport system is occurred mitochondrial dysfunction, increase of ROS (reactive oxygen species) and apoptosis after chemical damage on the cell caused by C. sinensis infection. Overall, C. sinensis infection induces fibrotic change of ductal connective tissue, mutation of cellular metabolism in fibroblast and mitochondrial dysfunction. Consequently, ductal fibrosis inhibits fibroblast proliferation and decreases mitochondrial electron transferase on fibroblast cytoplasm. It was assumed that the structure of bile duct could not normalized and ductal fibrosis was maintained for a long period of time according to fibroblast metamorphosis and death induced by mitochondrial dysfunction.

Physiological Activity of Sarcodon aspratus Extracts (능이버섯(Sarcodon aspratus) 추출물의 생리활성)

  • 송재환;이현숙;황진국;한정환;노정근;금동혁;박기문
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.172-179
    • /
    • 2003
  • This study was carried out to find the preventive medical and therapeutic effects of Sarcodon asparatus on adult disease by employing several biological and biochemical assays. Nitrate scavenging ability(NSA) of Sarcodan asparatus extracts was displayed up to 99.9% at pH 1.2 in a dose-dependent manner. They also had 90.4% electron donating ability(EDA) at the concentration of 0.1 mg/mL. Extracts of Sarcodon asparatus were also able to function as a powerful antioxidant at all concentrations(0.01∼l.0 mg/mL). Furthermore, we observed that 1 mg/mL concentration of the extracts was more powerful than BHT, With respect to fibrolytic activity, Sarcodon asparatus showed 1,843.8 unit/g, which was higher than streptokinase(1,189 unit/g). The inhibitory effects of the extracts on angiotensin converting enzyme, measured by the normal and pretreatment methods, were 53 and 58%, respectively. We also performed cytotoxicity effect of Sarcodon asparatus extracts on a various cancer cell lines. The growth inhibitory effects of the extracts(5.0 mg/mL) on A549, HeLa, AGS, and SK-Hep-1 cells were 78.9, 55.3, 69.0, and 42.5 %, respectively. Interestingly, Sarcodon asparatusextracts induced mutation on Salmonella typhimurium TA98 and TA100 when Ames test was done.

Finite Element Analysis of Bone Stress Caused by Horizontal Misfit of Implant Supported Three-Unit Fixed Prosthodontics (3차원 유한요소법에 의한 임플란트 지지 3본 고정성 가공 의치의 부적합도가 인접골 응력에 미치는 영향 분석)

  • Lee, Seung-Hwan;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This study is to assess the effect of horizontal misfit of an implant supported 3-unit fixed prosthodontics on the stress development at the marginal cortical bone surrounding implant neck. Two finite element models consisting of a three unit fixed prosthodontics and an implant/bone complex were constructed on a three dimensional basis. The three unit fixed prosthodontics were designed either shorter (d=17.8mm model) or longer (d=18.0mm model) by 0.1mm than the span of two implants placed at the mandibular second premolar and second molar areas 17.9mm apart. Fitting of the fixed prosthodontics onto the implant abutments was simulated by a total of 6 steps, that is to say, 0.1mm displacement per each step, using DEFORM 3D (ver 6.1, SFTC, Columbus, OH, USA) program. Stresses in the fixed prosthodontics and implants were evaluated using von-Mises stress, maximum compressive stress, and radial stress as necessary. The d=17.8mm model assembled successfully on to the implant abutments while d=18.0mm model did not. Regardless if the fixed prosthodontics fitted onto the abutments or not, excessively higher stresses developed during the course of assembly trial and thereafter. On the marginal cortical bone around implants during the assembly, the peak tensile and compressive stresses were as high as 186.9MPa and 114.1MPa, respectively, even after the final sitting of the fixed prosthodontics (for d=17.8mm model). For this case, the area of marginal bone subject to compressive stresses above 55MPa, equivalent of the $4,000{\mu}{\varepsilon}$, i.e. the reported threshold strain to inhibit physiological remodeling of human cortical bone, extended up to 2mm away from implant during the assembly. Horizontal misfit of 0.1mm can produce excessively high stresses on the marginal cortical bone not only during the fixed prosthodontics assembly but also thereafter.

Cold-Sensitive Growth of Bacillus subtilis Mutants Deleted for Putative DEAD-Box RNA Helicase Genes (Bacillus subtilis DEAD-Box RNA Helicase 유전자 결손 균주들의 저온 민감성 생장)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.233-239
    • /
    • 2010
  • Four genes (yqfR, yfmL, ydbR, deaD) were identified as putative DEAD-box RNA helicase genes in the genomic sequence of Bacillus subtilis by homology search. To understand the function of these genes, each of the genes was deleted and the constructed strains were tested for their growth charateristics at different temperatures. The growth rate of ydbR deletion mutant ($T_d$=53 min) was a little bit reduced at $37^{\circ}C$ as compared to that of wild type strain (CU1065). But the growth rate of other three (yqfR, yfmL, deaD) deletion mutants ($T_d$=30-40 min) is nearly equal to the growth rate of wild type ($T_d$=32 min). On the other hands, the growth rate of deletion mutants were reduced at $22^{\circ}C$ in order of yqfR ($T_d$=151 min), yfmL ($T_d$=214 min), ydbR ($T_d$=343 min), which showed cold-sensitive phenotype. The deletion mutant of deaD ($T_d$=109 min) grew equally as compared to the growth rate ($T_d$=102 min) of the wild type at $22^{\circ}C$ and did not show cold-sensitive growth. Double, triple and quadruple deletion mutants of these genes were constructed, and growth rate of these mutants were measured at various temperature conditions ($22^{\circ}C$, $37^{\circ}C$, $42^{\circ}C$) using LB broth. Multiple deletion mutations showed more severe cold-sensitive growth than single deletion mutations, and double deletion of ydbR and yfmL ($T_d$=984 min) showed most cold-sensitive growth than any other double mutants. Such a cold-sensitive growth of these mutations is quite similar to the result of csdA or srmB deletion in E. coli and suggested that physiological role of ydbR and yfmL is related with ribosome assembly.

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress (북극 동물플랑크톤 Calanus glacialis TCTP (Translationally Controlled Tumor Protein)가 산화적 스트레스 상태에서 E. coli 세포의 저항성에 미치는 효과)

  • Park, Yu Kyung;Lee, Chang-Eun;Lee, Hyoungseok;Koh, Hye Yeon;Kim, Sojin;Lee, Sung Gu;Kim, Jung Eun;Yim, Joung Han;Hong, Ju-Mi;Kim, Ryeo-Ok;Han, Se Jong;Kim, Il-Chan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.931-938
    • /
    • 2020
  • Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.

Analysis on the Components in Stem of the Lespedeza bicolor (싸리(Lespedeza bicolor) 줄기의 성분 분석)

  • Lee, Yang-Suk;Joo, Eun-Yong;Kim, Nam-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1246-1250
    • /
    • 2005
  • This study was carried out to analyze the components of the stem of bush clover, Lespedeza bicolor to obtain basic data on the studies of the physiological function and a possibility of utilizing L. bicolor. General components of L. bicolor were 82.35$\%$ carbohydrate, 13.38$\%$ moisture, 2.80$\%$ crude protein, 0.86$\%$ crude ash and 0.61$\%$ crude fat. The content of reducing sugar was 147.58 mg/100 g. The total amount of free sugar was 52.4 mg/100 g that was composed of 31.0 mg/100 g fructose, 16.7 mg/100 g glucose and 4.7 mg/100 g sucrose. In the results of mineral analysis, the content of Ca was the highest (472.97 mg/100 g) and followed by 206.70mg/100 g of K. The total amount of hydrolyzed amino acid was 148.95 mg/100 g that consist of 31.74 mg/100g of essential amino acid and 117.24 mg/100 g of non-essential amino acid. Total free amino acids were contained 106.39 mg/100 g that was composed of 8.41 mg/100 g essential amino acids and 97.98 mg/100 g the non-essential, and proline (62.92 mg/100 g) was the highest that account for 59.8$\%$ of total free amino acids. Total content of amino acid derivatives was 30.01 mg/100g and that of $\gamma$ -aminoisobutyric acid was the highest as 12.57 mg/100 g among them.

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.