• Title/Summary/Keyword: Physiologic function

Search Result 114, Processing Time 0.03 seconds

Developement of Three-Dimensional Mathematical Spinal Model (척추의 3차원 수학적 척추 모델 개발)

  • 한정수;안태정;이태희
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.189-201
    • /
    • 2000
  • Mechanical factors in the human body are considered to play a dominant role in low back problems. Various spinal structures. including muscles, act in unison to resist the external load. An estimation of the muscle forces in this structure requires a knowledge of the orientation, location and area of cross-section of the muscles to complete the formulation of a truly three-dimensional mathematical model of the spine. The geometric parameters which are calculated were the line of action, the centroid and physiologic area of cross-section of each muscle as a function of the spinal level. This geometric data were obtained from CT scans of 11 subjects participating in this study.

  • PDF

Influence of Level and Source (Inorganic vs Organic) of Zinc Supplementation on Immune Function in Growing Lambs

  • Droke, E.A.;Gengelbach, G.P.;Spears, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • Eighteen lambs were used to determine the effects of zinc (Zn) level and source on Zn status and immune function during both normal conditions and conditions of physiologic stress. Treatments consisted of a basal diet (27.6 mg of Zn/kg), and the basal diet supplemented with 25 mg of Zn/kg, added as either zinc oxide or zinc methionine. The basal diet was a corn-cottonseed hull-isolated soy protein- based diet (14% CP). Lambs were weighed and blood samples taken at 28-d intervals for determination of serum Zn and alkaline phosphatase activity. Weights and serum Zn were similar (p > 0.10) among treatments at all sampling days. To evaluate immune responses and Zn status during conditions of physiologic stress lambs were administered 100 I.U. of adrenocorticotrophin (ACTH) on d 112 and feed was withheld for 48 h. Cortisol levels were elevated (p < .01) 5 h post ACTH injection, but had returned to initial levels after 48 h. Lymphocyte blastogenesis ([$^3H$]-thymidine incorporation) on d 112 (prior to ACTH injection) and 114 was unaffected (p > .10) by dietary treatment. However, blastogenesis in response to pokeweed mitogen was greater (p < .0001), whereas the response to phytohemagglutinin was reduced (p < .01) following ACTH administration and fasting. Antibody response to administration of porcine red blood cells was unaffected (p > .05) by dietary treatment. These results indicate that, given the Zn concentration of the basal diet, there was no enhancement of immune function by supplemental Zn, either before or after lambs were subjected to stress.

The Effects of Rhythmic Exercise Program on Physiologic Variables, Life satisfaction, Calcium, Phosphorous, Osteocalcin, Deoxypyridinoline in the Elderly Women (율동적 운동 프로그램이 여성노인의 생리적 지수, 생활만족, Calcium, Phosphorous, Osteocalcin, Deoxypyridinoline에 미치는 영향)

  • Jung, Young-Ju
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.2
    • /
    • pp.93-112
    • /
    • 2002
  • Recently, the number of the elderly has increased according to the improvement of socioeconomic status and the efficient medical care system. In spite of the development of medicine, the elderly suffers from the various health problems caused by weakness of musculoskeletal system, cardiopulmonary function and immunologic dysfunction. Regular rhythmic exercise program is known to be one of the effective tools to enhance the health condition in the elderly. However, there has been few studies to evaluate the comprehensive effects of rhythmic movement program on the elderly. This study was focused to evaluate the indices of cardiopulmonary function, life satisfaction, calcium, phosphorous, osteocalcin and deoxypyridinoline which are the essential factors of health problems in the elderly women. Twenty six subjects, aged between 68 and 72, who can do the ordinary activities and do not have cardiovascular dysfunction and mental disorder, participated in this study. They were divided into two groups: 13 in the experimental group and 13 in the control group. The experimental group participated in the rhythmic movement program at the welfare center located in G-city. The program were consisted of three sessions a week during 10 weeks. Each session had three parts: warming up(10 minutes), main exercise(40 minutes), finishing(10 minutes). Heart rate, blood pressure and peripheral arterial oxygen saturation were measured for the evaluation of cardiopulmonary function. Serum calcium, phosphorous, osteocalcin and urine deoxypyridinoline were measured as the indices of bony metabolism. Data were analyzed with mean, standard deviation, $x^2$-test, t-test, paired t-test using SPSS PC+ program. The results of this study were as follows. 1) Heart rate of the experimental group showed significant decrease following the rhythmic movement program. Peripheral arterial oxygen saturation of the experimental group showed significant increase following the program. 2) The degree of life satisfaction of the experimental group showed significant increase following the program. 3) Calcium showed significant decrease following the program but remained within normal range. There was no significant difference of phosphorous between two groups. 4) Osteocalcin, the index of bone formation, showed no significant change following the program, but significant increase in the experimental group comparing with the control group. 5) Deoxypyridinoline, the index of bone resorption, in urine of the experimental group showed significant decrease following the program. In conclusion, the rhythmic exercise program in the elderly showed the improvement of physiologic function and favorable effects on life satisfaction and bony metabolism. According to the above results, the regular rhythmic movement program can be strongly recommended for the improvement of health in the elderly women.

  • PDF

T cell costimulation by CD28, CTLA-4, and ICOS

  • Lee, Kyung-Mi
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.95-103
    • /
    • 2001
  • T cells play a central role in the initiation and regulation of the immune response to foreign antigens. Full activation of T cells requires the engagement of T cell receptor complex (TCR) and the binding of a second costimulatory receptor to its ligand expressed on antigen presenting cells (APC). Among the molecules known to provide costimulatory function, CD28 has been the most dominant and potent costimulatory molecule. However, the function of CD28 is becoming more complex due to the recent discovery of its structural homologue, CTLA-4 and ICOS. This review summarizes the biology and physiologic function of each of these receptors, and further focuses on the biochemical mechanism underlying the function of these receptors. Complete understanding of the CD28/CTLA-4/ICOS costimulatory pathway will provide the basis for developing new therapeutic approaches for immunological dieseases.

  • PDF

A Study of the Functional Anatomy of the Hand (손의 기능 해부에 대한 연구)

  • Park, Young-Han;Lee, Hyo-Jeong
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.1
    • /
    • pp.61-74
    • /
    • 2006
  • This study about functional anatomy of the hand. hand injuries are among the most common problems confronting patient, physical therapist and physicians. physical therapist should know about normal hand function and anatomical structure for hand injury, clinical reasoning and intervention. physical therapist should know about the Skeletal of the hand, Function of The Hand, Nerves of the hand, Sensation of the Hand, Intrinsic muscle, Power and Balance and Functional Position of the Hand. In this article, we discuss the physiologic properties of hand structure, biomechanical observation in hand function, sensation and nerves, hand positioning.

  • PDF

High Resolution Pitch Determination Algorithm for Fetal Heart Rate Extraction (태아심음주기의 검출을 위한 고해상 피치 검출 알고리즘)

  • 이응구;이두수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.80-87
    • /
    • 1994
  • Fetal monitoring is a routine procedure to obtain a record of physiologic functions during pregnancy and labor. It is required to determine fetal heart frequency accurately. There are various types of fetal heart rate(FHR) determination and the most frequently applied method is transabdominal Doppler ultrasound. However, in the case of weak or noise corrupted Doppler ultrasound signals, conventional peak detections and the autocorrelation function method have many difficulties to determine FHR precisely. Also the autocorrelation function is effected by threshold level and window size. To solve these problems, the high resolution pitch determination algorinthm is introduced to detect FHR from Doppler ultrasound signals. This scheme digitally processes Doppler ultrasound signal for digital rectification, envelope detection, decimation and correlation calculation of two interconnected segments and then FHR is determined by its maximal value. Even in the case of a greatly smeared noise signal, this algorithm is able to search FHR more accurately than autocorrelation function by means of compensating FHR with a constant correlation threshold. This algorithm is simulated by 386-MATLAB on PC 486/DX and verified that it is superior to the autocorrelation function method.

  • PDF

Biomechanics and Occlusion for Implant-Supported Prosthesis (임플란트 보철의 생역학과 교합)

  • Koo, Cheol-Ihn;Kwak, Jong-Ha;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.2
    • /
    • pp.127-144
    • /
    • 2002
  • There is an increasing appreciation of the vital role that biomechanics play in the performance of oral implant. The aim of this article is to provide some basic principles that will allow a clinician to formulate a biomechanically valid treatment plan. However, at this point in the history of oral implantology, the clinician should realize that we do not know enough to provide absolute biomechanical rules that will guarantee success of all implants in all situations. To examine the biomechanical questions, one must begin with an analysis of the distribution of biting forcess to implants. Related topics, such as stress transfer to surrounding tissues and interrelationships between bone biology and mechanical loading are major subjects, deserving a separate discussion. Once rigid fixation, angulation, crestal bone level, contour, and gingival health are achieved, stress beyond physiologic limits is the primary cause of initial bone loss around implants. The restoring dentist has specific responsibilities to reduce overload to the bone-implant interface. These include proper diagnosis, leading to a treatment plan designed with adequate retention and form, and progressive loading to improve the amount and density of bone and further reduce the risk of stress beyond physiologic limits. The major remaining factor is the development of occlusal concept in harmony with the rest of the stomagnetic system.

STUDY ON THERMOSENSITIVITY OF CHITOSAN SCAFFOLD AND ON ITS EFFECTS ON FIBROBLAST PROLIFERATION IN CELL THERAPY FOR SOFT TISSUE AUGMENTATION (연조직 증강을 위한 세포치료 시 비계로서 키토산의 온도 감응성 및 섬유모세포의 증식에 미치는 영향에 관한 연구)

  • Kim, Jung-Ho;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.3
    • /
    • pp.146-152
    • /
    • 2009
  • Traditional surgical method or injection using filler is performed for soft tissue augmentation. Surgical methods have disadvantage of surgical morbidity. Commercially available injectable materials have the disadvantages such as resorption, short-term effect. repeated application and hypersensitivity. Significant shortcoming of cell therapy using autologous fibroblasts is delay of treatment effect. Chitosan/${\beta}$-glycerol phosphate (GP) solution has thermosensitive property and allows sol-gel transition at physiologic pH and temperature. These properties may resolve the delay of treatment effect. The purposes of this study are to evaluate the viscosity and pH changes of chitosan/${\beta}$-GP solutions and to evaluate the effect of chitosan/${\beta}$-GP solution on fibroblast proliferation and production of collagen. We measured the viscosity and pH as function of temperature, of the solution containing 1:0.7, 1:0.75, 1:0.8 chitosan (1, 10, 100, 700 kDa) /${\beta}$-GP. Fibroblasts from ears of 5 rats were cultured in chitosan/${\beta}$-GP solutions for 3 weeks. Cell proliferation and collagen contents were measured every week with WST (water-soluble tetrazolium salt) assay and Collagen assay respectively. The Results are 1) Chitosan(100 kDa<)/${\beta}$-GP solution (1:0.75) showed sol-gel transition at physiologic pH and body temperature and injectable properties. It will enable to resolve the delay in treatment effect 2) Cell proliferation and total collagen contents of the control group were increased with time. However, these decreased after the 1st week in experimental group 3) Collagen contents in the experimental group are higher than that of control group. Chitosan/${\beta}$-GP solution may provide favorable conditions for cell function

PET and PET/CT in Clinical Cardiology (심장 PET과 PET/CT의 임상적 이용)

  • Won, Kyoung-Sook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.124-132
    • /
    • 2005
  • Cardiac PET emerged as a powerful tool that allowed in vivo quantification of physiologic processes including myocardial perfusion and metabolism, as well as neuronal and receptor function for more than 25 years. Wow PET imaging has been playing an important role in the clinical evaluation of patients with known or suspected ischemic heart disease. This important clinical role is expected to grow with the availability of PET/CT scanner that allow a true integration of structure and function. The objective of this review is to provide an update on the current and future role of PET in clinical cardiology with a special eye on the great opportunities now offered by PET/CT.

Frequent Changes of 3' UTR Sequences in the Genes Expressed During Hematopoietic Differentiation Implicates the Importance of 3' UTR in Regulation of Gene Function (조혈세포의 분화과정에서 발현되는 유전자의 3‘ UTR 염기서열의 변화가 유전자 기능의 조절에 미치는 영향에 대한 연구)

  • Lee Sanggyu
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • The 3' UTR (3' untranslated region) plays important roles in controlling gene expression through regulating 3' polyadenylation, mRNA export, subcellular localization, translational efficiency, and mRNA stability. Changes in the 3' UTR sequence in an expressed transcript can result in functional changes of the genes that are expressed in pathological conditions compared with those genes expressed in normal physiologic conditions. A genome-wide survey of 3' UTR variation was performed for the genes expressed during hematopoietic differentiation from CD34+ stem/progenitor cells to CD 15 + myeloid progenitor cells. Wide-spread differential usage of the 3' UTR was observed from the genes expressed during this cellular transition. This study implies that the 3' UTR can be a highly coordinated region for post-transcriptional regulation of the function of expressed genes.