• Title/Summary/Keyword: Physics-based fluid simulation

Search Result 33, Processing Time 0.025 seconds

Numerical Simulation of a Forest Fire Spread (산불 전파의 수치 시뮬레이션)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In the present study, a forest fire spread was simulated with a three-dimensional, fully-transient, physics-based, computer simulation program. Physics-based fire simulation is based on the governing equations of fluid dynamics, combustion and heat transfer. The focus of the present study is to perform parametric study to simulate fire spread through flat and inclined wildland with vegetative fuels like trees or grass. The fire simulation was performed in the range of the wind speeds and degrees of inclination. From the results, the effect of the various parameters of the forest fire on the fire spread behavior was analyzed for the future use of the simulation in the prediction of fire behavior in the complex terrain.

Real Examples based Natural Phenomena Synthesis

  • An, HyangA;Seo, Yong-Ho;Park, Jinho
    • International journal of advanced smart convergence
    • /
    • v.2 no.2
    • /
    • pp.7-9
    • /
    • 2013
  • Current physics-based simulation is an important tool in the fluid animation. However some problems require a new change to current research trends which depend only on the simulation. The ultimate goal of this project is to obtain information of flow example, analyze an example through machine learning and the novel fluid animation reconfigure without physical simulation.

DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN (다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발)

  • Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF

Procedural Fluid Animation using Mirror Image Method

  • Park, Jin-Ho
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • Physics based fluid animation schemes need large computation cost due to tremendous degree of freedom. Many researchers tried to reduce the cost for solving the large linear system that is involved in grid-based schemes. GPU based algorithms and advanced numerical analysis methods are used to efficiently solve the system. Other groups studied local operation methods such as SPH (Smoothed Particle Hydrodynamics) and LBM (Lattice Boltzmann Method) for enhancing the efficiency. Our method investigates this efficiency problem thoroughly, and suggests novel paradigm in fluid animation field. Rather than physics based simulation, we propose a robust boundary handling technique for procedural fluid animation. Our method can be applied to arbitrary shaped objects and potential fields. Since only local operations are involved in our method, parallel computing can be easily implemented.

Non-fluid representation technique using fluid simulation (유체 시뮬레이션 기술을 이용한 비유체 표현기법)

  • Lee, Sung-Jun;Heo, Yeon-Jin;Shin, Byeong-Seok
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In this paper, we have implemented soil simulation using fluid simulation technology. A widely used NVIDIA FleX was used to represent the soil generated by excavation work. FleX is a particle-based physics simulation library that combines SPH (Smoothed-particle hydrodynamics) and Position Based Dynamics techniques. However, since the soil has not only fluid properties but also non-fluid properties, it is difficult to simulate with the functions provided by conventional FleX. In this study, we added a technique to simulate non-fluid behavior using existing Flex. This can lead to effective results improvement at low cost.

Realtime Fire Simulation and Rendering on Mobile Environment (모바일 환경에서 불꽃의 실시간 시뮬레이션과 렌더링)

  • Woo, Sang-Hyuk;Jo, Mi-Ri-Na;Park, Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.934-943
    • /
    • 2007
  • This paper presents a real-time fire simulation on the mobile phone using stable fluid animation techniques. Stable and fast fluid simulation methods are developed in PC and console games, but fluid simulation and interactive fluid models require too much system resources for applying on mobile environment. We studied and implemented physics-based models for fluids like fire and smoke effects using billboard and stable fluids simulation method on mobile 3D system. The mobile platform of our system is WIPI, which is the standard mobile platform in Korea, also we adopted NF3D API for our 3D programming API. We implemented real-time fire simulation and added it in mobile 3D game, "Rupee Story".

  • PDF

Realtime Fluid Simulation and Rendering Using Billboard method on Mobile Environment (모바일 환경에서의 빌보드 기법을 통한 실시간 유체 시뮬레이션 렌더링)

  • Woo, Sang-Hyuk;Cho, Mirina;Park, Dong-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.264-268
    • /
    • 2006
  • This paper presents a fire and smoke animation system using stable fluid animation techniques. Stable and fast fluid simulation methods are developed in PC and console games, but fluid simulation and interactive fluid models still have many problems. We studied and implemented physics-based models for fluids like fire and smoke effects using mobile 3D system. The mobile platform of our system is WIPI, which are the standard mobile platform in Korea also we adopted NF3D API for our 3D programming API.

  • PDF

Analysis of Computational Science and Engineering SW Data Format for Multi-physics and Visualization

  • Ryu, Gimyeong;Kim, Jaesung;Lee, Jongsuk Ruth
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.889-906
    • /
    • 2020
  • Analysis of multi-physics systems and the visualization of simulation data are crucial and difficult in computational science and engineering. In Korea, Korea Institute of Science and Technology Information KISTI developed EDISON, a web-based computational science simulation platform, and it is now the ninth year since the service started. Hitherto, the EDISON platform has focused on providing a robust simulation environment and various computational science analysis tools. However, owing to the increasing issues in collaborative research, data format standardization has become more important. In addition, as the visualization of simulation data becomes more important for users to understand, the necessity of analyzing input / output data information for each software is increased. Therefore, it is necessary to organize the data format and metadata for the representative software provided by EDISON. In this paper, we analyzed computational fluid dynamics (CFD) and computational structural dynamics (CSD) simulation software in the field of mechanical engineering where several physical phenomena (fluids, solids, etc.) are complex. Additionally, in order to visualize various simulation result data, we used existing web visualization tools developed by third parties. In conclusion, based on the analysis of these data formats, it is possible to provide a foundation of multi-physics and a web-based visualization environment, which will enable users to focus on simulation more conveniently.

Computational Fluid Dynamics Modeling Studies on Bacterial Flagellar Motion

  • Kumar, Manickam Siva;Philominathan, Pichai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, which is unique and time reversible. In particular, the effect of rotation of helical flagella of bacterium on swimming motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find the variables that affect the forward thrust experienced by the swimming bacterium. It is found that the propulsive force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the helical radius and inversely proportional to pitch).

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.