• Title/Summary/Keyword: Physics-based Distributed Rainfall-Runoff Model

Search Result 9, Processing Time 0.019 seconds

Development of a Distributed Rainfall-Runoff System for the Guem River Basin Using an Object-oriented Hydrological Modeling System (객체지향형 수문 모델링 시스템을 이용한 금강유역 분포형 강우-유출 시스템의 개발)

  • Lee, Gi-Ha;Takara, Kaoru;Jung, Kwan-Sue;Kim, Jeong-Yup;Jeon, Ja-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.149-153
    • /
    • 2009
  • Physics-based distributed rainfall-runoff models are now commonly used in a variety of hydrologic applications such as to estimate flooding, water pollutant transport, sedimentation yield and so on. Moreover, it is not surprising that GIS has become an integral part of hydrologic research since this technology offers abundant information about spatial heterogeneity for both model parameters and input data that control hydrological processes. This study presents the development of a distributed rainfall-runoff prediction system for the Guem river basin ($9,835km^2$) using an Object-oriented Hydrological Modeling System (OHyMoS). We developed three types of element modules: Slope Runoff Module (SRM), Channel Routing Module (CRM), and Dam Reservoir Module (DRM) and then incorporated them systemically into a catchment modeling system under the OHyMoS. The study basin delineated by the 250m DEM (resampled from SRTM90) was divided into 14 midsize catchments and 80 sub-catchments where correspond to the WAMIS digital map. Each sub-catchment was represented by rectangular slope and channel components; water flows among these components were simulated by both SRM and CRM. In addition, outflows of two multi-purpose dams: Yongdam and Daechung dams were calculated by DRM reflecting decision makers' opinions. Therefore, the Guem river basin rainfall-runoff modeling system can provide not only each sub-catchment outflow but also dam inand outflow at one hour (or less) time step such that users can obtain comprehensive hydrological information readily for the effective and efficient flood control during a flood season.

  • PDF

Evaluation of Accuracy of the Physics Based Distributed Hydrologic Model Using VfloTM Model (VfloTM 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가)

  • Hong, Jun Bum;Kim, Byung Sik;Yoon, Seok Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.613-622
    • /
    • 2006
  • In this study, a fully distributed physical-based rainfall-runoff model called Vflo$^{TM}$ is applied to Junglang-cheon basin for simulating runoff. Geo-spatial data are used to parameterize the model to account for the characteristics of soils, landuse/cover, and topograph. 300m resolution DEM is used to compute slope and drainage network connectivity. Spatially distributed rainfall data is interpolated by ordinary kriging method. In this study, hydrograph from HEC-HMS and Vflo$^{TM}$ without/with calibration of parameters was compared to evaluate the accuracy of rainfall-runoff model From the results, a fully distributed physical-based rainfall-runoff model reproduce the peak time and shape of hydrograph much better than HEC-HMS.

Development and Application of a Physics-based Soil Erosion Model (물리적 표토침식모형의 개발과 적용)

  • Yu, Wansik;Park, Junku;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Park, Youn Shik;Hwang, Sangil;Lee, Giha
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

Spatial analysis of soil erosion and deposition using physics-based distributed model

  • Min Geun Song;Young Hun Kim;Chan Ul Choi;Van Linh Nguyen;Min Ho Yeon
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.3
    • /
    • pp.375-389
    • /
    • 2024
  • Soil erosion, a critical environmental issue primarily driven by water and wind, has severe consequences, including the loss of fertile agricultural land, degradation of water quality, and sediment accumulation in riverbeds. This study utilized the SSEM (surface soil erosion model), a physically-based distributed model, to simulate the rainfall-runoff-sediment dynamics associated with short-term rainfall events in the Naerin River basin. A spatial analysis of erosion and deposition was conducted, taking into account topographical factors such as local slope and overland flow length. The study area was segmented into six sub-catchments using Strahler's stream order method to examine the correlation between geographic factors and erosion or deposition. The findings revealed that erosion was predominant within flow path distances of 0 - 1 km (adjacent to the river) and 3 - 4 km (in the upper catchment areas). Notably, deposition did not occur in areas beyond 2.5 km from the river. Furthermore, it was observed that average erosion depth increased on steeper slopes (exceeding 0.3 - 0.4 degrees), whereas deposition was absent in these steep slope classes.

Analysis of Runoff Sensitivity for Initial Soil Condition in Distributed Model (초기토양조건에 대한 분포형모형 유출민감도 분석)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.375-381
    • /
    • 2008
  • In this research, a physics based grid-multi layer distributed flood runoff model was developed to analyze discharge for the Namgang Dam Watershed ($2,293km^2$) and applied for sensitivity analysis for estimation of parameters, mainly initial soil moisture condition and saturate infiltration coefficient, which have a strong influence on discharge. Capability of the model was evaluated using VER and QER from the results of rainfall-runoff analysis and showed enhanced results of 6% compared to parameters before calibration. As the result with the sensitivity analysis of parameters, the part of the most influence on the runoff was the infiltration coefficient and ratio of layer partition. The total discharge and peak time showed comparatively precise runoff results without the initial calibration of the parameters.

Application of K-DRUM Model for Pakistan Kunhar River Basin Considering Long-term Snow Melt and Cover (장기 융·적설을 고려한 파키스탄 Kunhar강 유역 K-DRUM모형 구축 및 적용)

  • Park, Jin Hyeog;Hur, Young Teck;Noh, Joon Woo;Kim, Seo-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2237-2244
    • /
    • 2013
  • In this study, physics based K-DRUM(K-water Distributed RUnoff Model) using GIS spatial hydrologic data as input data was developed to account for the temperature variation according to the altitude change considering snow melt and cover. The model was applied for Pakistan Kunhar River Basin($2,500km^2$) to calculate long-term discharge considering snow melt and cover. Time series analysis of the temperature and rainfall data reveals that temperature and rainfall of the river basin differs significantly according to altitude change compared to domestic basin. Thus, applying temperature and altitude lapse rate during generate input data generation. As a result, calculated discharge shows good agreement with observed ones considering snow melt and accumulation characteristic which has the difference of 4,000 meter elevation above sea level. In addition, the simulated discharge strongly showed snow melting effect associated with temperature rise during the summer season.

Parameter Sensitivity Analysis of VfloTM Model In Jungnang basin (중랑천 유역에서의 VfloTM 모형의 매개변수 민감도 분석)

  • Kim, Byung Sik;Kim, Bo Kyung;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.503-512
    • /
    • 2009
  • Watershed models, which are a tool for water cycle mechanism, are classified as the distributed model and the lumped model. Currently, the distributed models have been more widely used than lumped model for many researches and applications. The lumped model estimates the parameters in the conceptual and empirical sense, on the other hand, in the case of distributed model the first-guess value is estimated from the grid-based watershed characteristics and rainfall data. Therefore, the distributed model needs more detailed parameter adjustment in its calibration and also one should precisely understand the model parameters' characteristics and sensitivity. This study uses Jungnang basin as a study area and $Vflo^{TM}$ model, which is a physics-based distributed hydrologic model, is used to analyze its parameters' sensitivity. To begin with, 100 years frequency-design rainfall is derived from Huff's method for rainfall duration of 6 hours, then the discharge is simulated using the calibrated parameters of $Vflo^{TM}$ model. As a result, hydraulic conductivity and overland's roughness have an effect on runoff depth and peak discharge, respectively, while channel's roughness have influence on travel time and peak discharge.

A Development of Auto-Calibration for Initial Soil Condition in K-DRUM Model (K-DRUM 개선을 위한 초기토양함수 자동보정기법 개발)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model, K-DRUM, based on physical kinematic wave was developed to simulate temporal and spatial distribution of flood discharge considering grid rainfall and grid based GIS hydrological parameters. The developed model can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. Output results of ASCII format as post-process can be created to express distribution of discharge in the watershed using GIS and express discharge as animation using TecPlot. an auto calibration method for initial soil moisture conditions that have an effect on discharge in the physics based K-DRUM was additionally developed. The baseflow for Namgang Dam Watershed was analysed to review the applicability of the developed auto calibration method. The accuracy of discharge analysis for application of the method was evaluated using RMSE and NRMSE. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions of K-DRUM.

  • PDF

A Study on Design Flood Analysis Using Moving Storms (설계홍수량 산정을 위한 이동강우 적용에 관한 연구)

  • Oh, Kyoung-Doo;Lee, Soon-Cheol;Ahn, Won-Sik;Ryu, Young-Hoon;Lee, Joon-Hak
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.167-185
    • /
    • 2010
  • One of the most difficult problems in estimating design floods is how to determine design storms. More specifically, the design storm problems turn into how to determine temporal and spatial distribution of the storm. In this study, Thiessen-Weighted BlocKing-type(TWBK) moving storms are suggested to resolve the design storm problems and their applicability is investigated. These moving storms are applied for 100-year 48-hour design flood estimation in Han river basin using a physics-based distributed rainfall-runoff model. Simulated floods from moving storms are compared with frequency-based ones estimated from observed floods.