DOI QR코드

DOI QR Code

A Study on Design Flood Analysis Using Moving Storms

설계홍수량 산정을 위한 이동강우 적용에 관한 연구

  • Oh, Kyoung-Doo (Department of Construction Engineering & Environmental Sciences, Korea Military Academy) ;
  • Lee, Soon-Cheol (Department of Civil Engineering, University of Suwon) ;
  • Ahn, Won-Sik (Department of Civil Engineering, University of Suwon) ;
  • Ryu, Young-Hoon (Department of Civil Engineering, University of Suwon) ;
  • Lee, Joon-Hak (Department of Construction Engineering & Environmental Sciences, Korea Military Academy)
  • 오경두 (육군사관학교 건설환경학과) ;
  • 이순철 (수원대학교 토목공학과) ;
  • 안원식 (수원대학교 토목공학과) ;
  • 류영훈 (수원대학교 토목공학과) ;
  • 이준학 (육군사관학교 건설환경학과)
  • Published : 2010.02.28

Abstract

One of the most difficult problems in estimating design floods is how to determine design storms. More specifically, the design storm problems turn into how to determine temporal and spatial distribution of the storm. In this study, Thiessen-Weighted BlocKing-type(TWBK) moving storms are suggested to resolve the design storm problems and their applicability is investigated. These moving storms are applied for 100-year 48-hour design flood estimation in Han river basin using a physics-based distributed rainfall-runoff model. Simulated floods from moving storms are compared with frequency-based ones estimated from observed floods.

설계홍수량산정과 관련하여 국내 실무에서 어려움을 겪는 가장 큰 문제 중 하나는 설계강우의 결정이다. 설계강우와 관련된 문제는 보다 세부적으로 살펴보면 강우의 시간분포와 강우의 공간분포 결정 문제로 집약될 수 있다. 본 연구에서는 강우의 시간분포와 공간분포에 관련된 문제를 해결할 수 있는 방법으로 티센가중치를 반영한 교호블록형 이동강우(TWBK moving storms)에 의한 설계홍수량 산정기법을 제안하고 그 적용성을 검토하였다. 100년 빈도 48시간 이동강우를 한강유역에 적용하여 그 결과를 기존 연구에서 홍수위 실측자료로부터 빈도해석에 의해 구한 홍수량과 비교하여 적용성을 입증하였다.

Keywords

References

  1. 건설교통부 (2007). 치수정책수립을 위한 강우-유출모형의 적용성 분석연구.
  2. 국토해양부 (2008). 한강유역 종합치수계획 수립연구.
  3. 김남원, 원유승 (2004). “우리나라의 빈도홍수량 추정.” 한국수자원학회논문집, 제37권, 제12호, pp. 1019-1032.
  4. 김남원, 이정은 (2009). “한강유역의 다목적댐 운영에 따른 빈도홍수량의 평가.” 한국수자원학회논문집, 제42권, 제2호, pp. 161-169. https://doi.org/10.3741/JKWRA.2009.42.2.161
  5. 박상우 (2008). 평창강 IHP 시범유역자료.
  6. 배덕효, 이정식 (2004). 도시 강우특성조사 및 지상강우관측 수집체계 구축. 도시홍수재해관리기술연구사업단. 건설교통부/한국건설교통기술평가원 건설핵심기술연구개발사업 FFC03-06.
  7. 오경두 (2009). 미래지향적인 소하천치수계획을 위한 소고. 소하천살리기 특집. 물과 미래, Vol. 42, No. 5, pp. 23-37, 한국수자원학회.
  8. 육명렬 (2002). “태풍 '루사(RUSA)'의 이동에 따른 기상 현상.” 제2회 재해관리기술세미나-2002 풍수해 특성과 재해대책-, pp. 1-39, 한국방재협회/행정자치부.
  9. 윤용남, 원석연 (1998). “한강 인도교 지점의 계획홍수량 산정을 위한 지점빈도해석.” 한국수자원학회논문집, 제31권, 제4호, pp. 59-65.
  10. 윤용남, 안재현, 이상렬 (2004). 도시하천 유역종합 치수 계획 수립기술. 도시홍수재해관리기술연구사업단. 건설교통부/한국건설교통기술평가원 건설핵심기술연구개발사업 FFC03-14.
  11. 이승재, 서규우, 허준행, 조원철 (1995). “한강 고안지점의 홍수위 환산과 홍수 빈도해석.” 한국수자원학회 논문집, 제28권, 제5호, pp. 191-204.
  12. 이재형, 전일권, 임용택 (1990). “호우역의 이동특성.” 한국수자원학회 학술대회지, 수공학논총 32권, pp. 53-60.
  13. 전종갑 (2004). 한국의 기후 제3장 대기순환의 특성. pp. 57-82, 기상청 기상연구소.
  14. 조용수, 전민우, 김훈 (2005). “유역형상에 의한 이동강우의 유출분석.” 한국수자원학회 '05 학술발표회 논문집, pp. 649-653.
  15. 최계운, 이희승, 안상진 (1993). “분포형 모델을 이용한 유역내 이동강우의 유출해석(II): 모델의 적용.” 한국수자원학회논문집, 제26권 제1호, pp. 81-91.
  16. 최계운, 강희경, 박용섭 (2000). “GIS를 활용한 유역내 이동강우에 의한 유출특성 연구.” 한국수자원학회 논문집, 제33권 제6호, pp. 793-804.
  17. 한건연, 전민우, 최규현 (2004). “이동강우에 의한 유출 영향분석.” 한국수자원학회논문집, 제37권, 제10호, pp. 823-836.
  18. 한국수자원학회 (2009). 분포형 모형 $Vflo^{TM}$에 의한 수문해석. 제20회 수공학웍샵교재 (http://www.kwra.or.kr 자료실/수공학워크샵).
  19. Foroud, N., Broughton, R.S., and Austin, G.L. (1984). “The effects of a moving rainstorm on direct runoff properties.” Water Resources Bulletin, Vol. 20, No. 1, pp. 87-91. https://doi.org/10.1111/j.1752-1688.1984.tb04645.x
  20. Hoblit, B., Zelinka, S.C. and Curtis, D. (2004). “Spatial Analysis of Storms Using GIS.” ESRI 2004 GIS User Conference Proceedings, http://gis.esri.com/library/userconf/proc04/abstracts/a1891.html
  21. Jensen, M. (1984). “Runoff pattern and peak flows from moving block rains based on a linear time-area curve.” Nordic Hydrology, Vol. 15, pp. 155-168.
  22. Marcus, N. (1964). A laboratory and analytical study of surface runoff under moving rainstorms. Unpublished Ph.D. thesis, University of Illinois, Urbana, Illinois.
  23. Maksimov, V.A. (1964). “Computing runoff produced by a heavy rainstorm with a moving center.” Soviet Hydrology, No. 5, pp. 510-513.
  24. McCuen, R.H. (1989). Hydrologic analysis and design. Prentice Hall Inc.
  25. Niemczynowicz, J. (1984a). “Investigation of the influence of rainfall movement on runoff hydrograph: Part I. Simulation of conceptual catchment.” Nordic Hydrology, Vol. 15, pp. 57-70.
  26. Niemczynowicz, J. (1984b). “Investigation of the influence of rainfall movement on runoff hydrograph: Part II. Simulation of real catchments in the city of Lund.” Nordic Hydrology, Vol. 15, pp. 71-84.
  27. Roberts, M.C. and Klingeman, P.C. (1970). “The infleunce of landform and precipitation parameters on flood hydrographs.” Journal of Hydrology, Vol. 11, pp. 393-411. https://doi.org/10.1016/0022-1694(70)90004-1
  28. Sargent, D.M. (1981). “An investigation into the effects of storm movement on the design of urban drainage systems: Part 1.” The Public Health Engineer, Vol. 9, pp. 201-207.
  29. Sargent, D.M. (1982). “An investigation into the effects of storm movement on the design of urban drainage systems: Part 2. Probability analysis.” The Public Health Engineer, Vol. 10, No. 2, pp. 111-117.
  30. Singh, V.P. (1998). “Effects of the direction of storm movements on planar flow.” Hydrological Processes, Vol. 12, pp. 147-170. https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<147::AID-HYP568>3.0.CO;2-K
  31. Surkan, A.J. (1974). “Simulation of storm velocity effects of flow from distributed channel network.” Water Resources Research, Vol. 10, No. 6, pp. 1149-1160. https://doi.org/10.1029/WR010i006p01149
  32. Vieux, B.E. (2004). Distributed Hydrologic Modeling Using GIS (2nd ed.). Kluwer Academic Publishers.
  33. Yen, B.C. and Chow, V.T. (1968). A study of surface runoff due to moving rainstorms. Hydraulic Engineering Series, No. 17, p. 112, Department of Civil Engineering, University of Illinois, Urbana, Illinois.