• Title/Summary/Keyword: Physics-based Contents Manipulation

Search Result 4, Processing Time 0.016 seconds

A Contextual Information and Physics-based Mobile Augmented Reality Contents Manipulation Method (맥락 정보와 물리적 속성 부여가 가능한 모바일 증강 현실 콘텐츠 조작 방법)

  • Hong, Dong-Pyo;Lee, Jeong-Gyu;Chae, Chang-Hun;Lee, Jong-Weon;Ko, Kwang-Hee;Woo, Woon-Taek
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.526-530
    • /
    • 2009
  • In this paper, we propose a contextual information and physics-based contents manipulation method for a mobile augmented reality authoring system. Due to proliferation of ubiquitous computing in information technology(IT) and advances in sensor technology and mobile devices, AR systems that were only possible in PC can be now feasible on mobile devices. In addition, many AR systems have been proposed that utilize sensory data and reflect them into. Thus, the proposed method provides appropriate visual cues for 3D manipulations of the augmented contents. In addition, uses can manipulate the augmented contents with sensory information through the assignment of sensors to the contents. Moreover, it supports not only a physics-based contents loader that enables users to specify physics properties into the contents, but also the transform matrix between AR and physics engine coordinates. To show the feasibility of the proposed method, we implemented a mobile augmented reality authoring system. We believe that the proposed method can be a key factor for context-aware mobile AR authoring system.

  • PDF

Design of Gaming Interaction Control using Gesture Recognition and VR Control in FPS Game (FPS 게임에서 제스처 인식과 VR 컨트롤러를 이용한 게임 상호 작용 제어 설계)

  • Lee, Yong-Hwan;Ahn, Hyochang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.116-119
    • /
    • 2019
  • User interface/experience and realistic game manipulation play an important role in virtual reality first-person-shooting game. This paper presents an intuitive hands-free interface of gaming interaction scheme for FPS based on user's gesture recognition and VR controller. We focus on conventional interface of VR FPS interaction, and design the player interaction wearing head mounted display with two motion controllers; leap motion to handle low-level physics interaction and VIVE tracker to control movement of the player joints in the VR world. The FPS prototype system shows that the design interface helps to enjoy playing immersive FPS and gives players a new gaming experience.

Collaborative Maintenance Simulation System Using Virtual Mockup (가상목업을 활용한 협업 정비 시뮬레이션 시스템)

  • Lee, Jun-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.148-165
    • /
    • 2012
  • Applying maintenance simulation using virtual mockup in product design phase enables maintainability test before prototyping physical products, and it is expected to reduce product development costs. The simulation results can be reused as contents of service manuals and RAM (Reliability, Availability, Maintainability) analysis data. Maintenance simulation should provide realistic representation of physical property of virtual product, assembly relation between parts and manipulation process to verify feasibility of product design. The simulation system should be extended to collaborative virtual environment to perform collaborative maintenance procedures. In this paper, the three layered system architecture and the physics based collaborative interaction technique are proposed to extend current maintenance simulation into collaborative virtual environment. The proposed system was implemented as ViMMS (Virtual Mockup Maintenance Simulation system), and compared with case study results of VADE (Virtual Assembly Design Environment). As a result, the ViMMS encompassed broader range of maintenance tasks by using physics based collaborative interaction technique.

A Dynamic Inferential Framework for Learning Geometry Problem Solving (기하 문제 학습을 위한 동적 추론 체계)

  • Kook, Hyung-Joon
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.412-421
    • /
    • 2000
  • In spite that the main contents of mathematical and scientific learning are understanding principles and their applications, most of existing educational softwares are based on rote learning, thus resulting in limited educational effects. In the artificial intelligence research, some progress has been made in developing automatic tutors based on proving and simulation, by adapting the techniques of knowledge representation, search and inference to the design of tutors. However, these tutors still fall short of being practical and the turor, even a prototype model, for learning problem solving is yet to come out. The geometry problem-solving tutor proposed by this research involves dynamic inference performed in parallel with learning. As an ontology for composing the problem space within a real-time setting, we have employed the notions of propositions, hypotheses and operators. Then we investigated the mechanism of interactive learning of problem solving in which the main target of inference involves the generation and the test of these components. Major accomplishment from this research is a practical model of a problem tutor embedded with a series of inference techniques for algebraic manipulation, which is indispensable in geometry problem solving but overlooked by previous research. The proposed model is expected to be applicable to the design of problem tutors in other scientific areas such as physics and electric circuitry.

  • PDF