• Title/Summary/Keyword: Physics-Informed Neural Networks(PINNs)

Search Result 4, Processing Time 0.019 seconds

Physics-informed neural network for 1D Saint-Venant Equations

  • Giang V. Nguyen;Xuan-Hien Le;Sungho Jung;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.171-171
    • /
    • 2023
  • This study investigates the capability of Physics-Informed Neural Networks (PINNs) for solving the solution of partial differential equations. Particularly, the 1D Saint-Venant Equations (SVEs) were considered, which describe the movement of water in a domain with shallow depth compared to its horizontal extent, and are widely adopted in hydrodynamics, river, and coastal engineering. The core contribution of this work is to combine the robustness of neural networks with the physical constraints of the SVEs. The PINNs method utilized a neural network to approximate the solutions of SVEs, while also enforcing the underlying physical principles of the equations. This allows for a more effective and reliable solution, especially in areas with complex geometry and varying bathymetry. To validate the robustness of the PINNs method, numerical experiments were conducted on several benchmark problems. The results show that the PINNs could be achieved high accuracy when compared with the solution from the numerical solution. Overall, this study demonstrates the potential of using PINNs and highlights the benefits of integrating neural network and physics information for improved efficiency and accuracy in solving SVEs.

  • PDF

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

  • Federico Antonello;Jacopo Buongiorno;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3409-3416
    • /
    • 2023
  • Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.

A sea trial method of hull-mounted sonar using machine learning and numerical experiments (기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안)

  • Ho-seong Chang;Chang-hyun Youn;Hyung-in Ra;Kyung-won Lee;Dea-hwan Kim;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.293-304
    • /
    • 2024
  • In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.