• Title/Summary/Keyword: Physics model

Search Result 1,625, Processing Time 0.023 seconds

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E.;Valencia-Morales, E.;Vega-Leyva, J.;Antiquera Munoz, J.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Atomic displacement cross-sections for neutron irradiation of materials from Be to Bi calculated using the arc-dpa model

  • Konobeyev, A. Yu.;Fischer, U.;Simakov, S.P.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.170-175
    • /
    • 2019
  • Displacement cross-sections for an advanced assessment of radiation damage rates were obtained for a number of materials using the arc-dpa model at neutron incident energies from $10^{-5}eV$ to 10 GeV. Evaluated data files, CEM03 and ECIS codes, and an approximate approach were applied for the calculation of recoil energy distributions in neutron induced reactions. Three sets of displacement cross-sections based on the use of low-energy data from JEFF-3.3, ENDF/B-VIII.0, and JENDL-4.0u were prepared. Files contain also cross-sections calculated using the standard NRT model. Special efforts were made to estimate the uncertainty of obtained displacement cross-sections.

Physics-based modelling for a closed form solution for flow angle estimation

  • Lerro, Angelo
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.273-287
    • /
    • 2021
  • Model-based, data-driven and physics-based approaches represent the state-of-the-art techniques to estimate the aircraft flow angles, angle-of-attack and angle-of-sideslip, in avionics. Thanks to sensor fusion techniques, a synthetic sensor is able to provide estimation of flow angles without any dedicated physical sensors. The work deals with a physics-based scheme derived from flight mechanic theory that leads to a nonlinear flow angle model. Even though several solvers can be adopted, nonlinear models can be replaced with less accurate but straightforward ones in practical applications. The present work proposes a linearisation to obtain the flow angles' closed form solution that is verified using a flight simulator. The main objective of the paper, in fact, is to analyse the estimation degradation using the proposed closed form solutions with respect to the nonlinear scheme. Moreover, flight conditions, where the proposed closed form solutions are not applicable, are identified.

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

One-dimensional CNN Model of Network Traffic Classification based on Transfer Learning

  • Lingyun Yang;Yuning Dong;Zaijian Wang;Feifei Gao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.420-437
    • /
    • 2024
  • There are some problems in network traffic classification (NTC), such as complicated statistical features and insufficient training samples, which may cause poor classification effect. A NTC architecture based on one-dimensional Convolutional Neural Network (CNN) and transfer learning is proposed to tackle these problems and improve the fine-grained classification performance. The key points of the proposed architecture include: (1) Model classification--by extracting normalized rate feature set from original data, plus existing statistical features to optimize the CNN NTC model. (2) To apply transfer learning in the classification to improve NTC performance. We collect two typical network flows data from Youku and YouTube, and verify the proposed method through extensive experiments. The results show that compared with existing methods, our method could improve the classification accuracy by around 3-5%for Youku, and by about 7 to 27% for YouTube.

Dielectric Function Analysis of Cubic CdSe Using Parametric Semiconductor Model (변수화 반도체 모델을 이용한 Cubic Zinc-blonde CdSe의 유전함수 분석)

  • Jung, Y.W.;Ghong, T.H.;Lee, S.Y.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • ZnCdSe alloy semiconductor was widely used for the optoelectronic device. And CdSe is the end-point in this material. In this work, we measured the dielectric function spectrum of cubic CdSe with Vacuum Ultra Violet spectroscopic ellipsometry and analysed this data with parametric model. As a result, we observed some of transition energy point over 6 eV and obtained the database for dielectric function spectrum, which could be used for temperature or alloy composition dependence study on optical property of CdSe.

Enhancing photoluminescence of Au - TiO2 nanoparticles using Drude model

  • Dang, Diem Thi-Xuan;Vu, Thi Hanh Thu
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.288-296
    • /
    • 2017
  • The enhancement of photoluminescence of Au-$TiO_2$ nanoparticles by surface plasmon resonance has been studied extensively by experiment in recent years. For the purpose of optimizing the photoluminescence property of Au-$TiO_2$ nanoparticles, the manufacturing parameters related to the Au nanoparticles and $TiO_2$ nanoparticles need to be considered. In this paper, Drude model and Maier's effective volume method are used to analyze the variation of the metal nanoparticle radius, separation between metal nanoparticle and dielectric molecule, and total absorption cross-section with original radiative efficiency on the photoluminescence property of Au-$TiO_2$ nanoparticles. The results show that to obtain the optimized enhancement factor for photoluminescence process, the size of Au nanoparticle is about 13 - 20 nm, the separation between Au nanoparticle and $TiO_2$ molecule is about 5 -15 nm, the total absorption cross-section of $TiO_2$ molecules is about $1-100nm^2$ and the original radiative efficiency of $TiO_2$ molecule is weak about 0.001- 0.1. With these fabrication parameters, the photoluminescence property of Au-$TiO_2$ nanoparticles can be enhanced several thousand times compared to traditional $TiO_2$ nanoparticles.

Research on the Relative Contribution of Two Electron Groups of Ar plasma with Non-thermal Equilibrium Electron Distribution (열적 비평형 전자분포를 갖는 아르곤 플라즈마의 두 전자그룹의 상대적인 기여도에 대한 연구)

  • Lee, Young Seok;Lee, Jang Jae;Kim, Si Jun;You, Shin Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.76-83
    • /
    • 2018
  • The electron energy probability function (EEPF) is of significant importance since the plasma chemistry such as the rate of ionization is determined by the electron energy distribution function. It is usually assumed to be Maxwell distribution for 0-D global model. Meanwhile, it has been observed experimentally that the form of EEPF of Ar plasma changes from being two-temperature to Druyvesteyn like as the gas pressure increases. Thus, to apply the 0-D global model of Maxwellian distribution to the non-Maxwellian plasma, we investigated the relative contribution of two distinct electrons with different temperatures. The contributions of cold/hot electrons to the equilibrium state of the plasma have attracted interest and been researched. The contributions to the power and particle balance of cold/hot electrons were studied by comparing the result of the global model considering all combinations of electron temperatures with that of 1-D Particle-in-Cell and Monte Carlo collision (PIC-MCC) simulation and the results of studies were analyzed physically. Furthermore, comparisons term by term for variations of the contribution of cold/hot electrons at different driving currents are presented.

Uncertainty analysis of heat transfer of TMSR-SF0 simulator

  • Jiajun Wang;Ye Dai;Yang Zou;Hongjie Xu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.762-769
    • /
    • 2024
  • The TMSR-SF0 simulator is an integral effect thermal-hydraulic experimental system for the development of thorium molten salt reactor (TMSR) program in China. The simulator has two heat transport loops with liquid FLiNaK. In literature, the 95% level confidence uncertainties of the thermophysical properties of FLiNaK are recommended, and the uncertainties of density, heat capacity, thermal conductivity and viscosity are ±2%, ±10, ±10% and ±10% respectively. In order to investigate the effects of thermophysical properties uncertainties on the molten salt heat transport system, the uncertainty and sensitivity analysis of the heat transfer characteristics of the simulator system are carried out on a RELAP5 model. The uncertainties of thermophysical properties are incorporated in simulation model and the Monte Carlo sampling method is used to propagate the input uncertainties through the model. The simulation results indicate that the uncertainty propagated to core outlet temperature is about ±10 ℃ with a confidence level of 95% in a steady-state operation condition. The result should be noted in the design, operation and code validation of molten salt reactor. In addition, more experimental data is necessary for quantifying the uncertainty of thermophysical properties of molten salts.

A Systems Engineering Approach to Multi-Physics Analysis of a CEA Withdrawal Accident

  • Jan, Hruskovic;Kajetan Andrzej, Rey;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.58-74
    • /
    • 2022
  • Deterministic accident analysis plays a central role in the nuclear power plant (NPP) safety evaluation and licensing process. Traditionally the conservative approach opted for the point kinetics model, expressing the reactor core parameters in the form of reactivity and power tables. However, with the current advances in computational power, high fidelity multi-physics simulations using real-time code coupling, can provide more detailed core behavior and hence more realistic plant's response. This is particularly relevant for transients where the core is undergoing reactivity anomalies and uneven power distributions with strong feedback mechanisms, such as reactivity initiated accidents (RIAs). This work addresses a RIA, specifically a control element assembly (CEA) withdrawal at power, using the multi-physics analysis tool RELAP5/MOD 3.4/3DKIN. The thermal-hydraulics (TH) code, RELAP5, is internally coupled with the nodal kinetics (NK) code, 3DKIN, and both codes exchange relevant data to model the nuclear power plant (NPP) response as the CEA is withdrawn from the core. The coupled model is more representative of the complex interactions between the thermal-hydraulics and neutronics; therefore the results obtained using a multi-physics simulation provide a larger safety margin and hence more operational flexibility compared to those of the point kinetics model reported in the safety analysis report for APR1400. The systems engineering approach is used to guide the development of the work ensuring a systematic and more efficient execution.