• 제목/요약/키워드: Physics based simulation

검색결과 447건 처리시간 0.031초

모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가 (Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation)

  • 이관우;윤준헌;박수한;박재흥
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발 (The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis)

  • 진문섭;최준호;정경렬
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권2호
    • /
    • pp.205-210
    • /
    • 2013
  • 본 연구에서는 스키 시뮬레이터의 사용자 감응형 제어를 위한 물리모델과 동작인식 시스템의 개발되었으며, 스키 선수의 자세 변화에 따른 스키 슬로프 상에서의 거동과의 부합성 확보를 위하여 실제 현장 실험데이터의 회귀분석을 통해 동작인식 시스템에 사용될 파라미터 및 관계식을 도출하였다. 개발된 물리모델 기반 스키 동작 인식 시뮬레이터는 실시간으로 Kinect 장치를 사용하여 사용자의 관절별 질량을 분석하여, 정확한 체중심을 추정하고, 시뮬레이터 하드웨어에서 적용할 수 있도록 힘, 속도, 가속도에 대한 피드백을 전달하도록 구성되었다. 본 연구결과는 스키시뮬레이터의 인식모듈로 사용되었으며, 물리모델 기반 가상 스포츠 시뮬레이터 제작에 응용 할 수 있는 자료로 활용될 것이다.

Computational Science-based Research on Dark Matter at KISTI

  • Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.153-159
    • /
    • 2017
  • The Standard Model of particle physics was established after discovery of the Higgs boson. However, little is known about dark matter, which has mass and constitutes approximately five times the number of standard model particles in space. The cross-section of dark matter is much smaller than that of the existing Standard Model, and the range of the predicted mass is wide, from a few eV to several PeV. Therefore, massive amounts of astronomical, accelerator, and simulation data are required to study dark matter, and efficient processing of these data is vital. Computational science, which can combine experiments, theory, and simulation, is thus necessary for dark matter research. A computational science and deep learning-based dark matter research platform is suggested for enhanced coverage and sharing of data. Such an approach can efficiently add to our existing knowledge on the mystery of dark matter.

Numerical Investigation of Purcell Enhancement of the Internal Quantum Efficiency of GaN-based Green LED Structures

  • Choi, Young-Hwan;Ryu, Guen-Hwan;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.626-630
    • /
    • 2017
  • GaN-based green light-emitting diode (LED) structures suffer from low internal quantum efficiency (IQE), known as the "green gap" problem. The IQE of LED structures is expected to be improved to some extent by exploiting the Purcell effect. In this study, the Purcell effect on the IQE of green LED structures is investigated numerically using a finite-difference time-domain simulation. The Purcell factor of flip-chip LED structures is found to be more than three times as high as that of epi-up LED structures, which is attributed to the high-reflectance mirror near the active region in the flip-chip LED structures. When the unmodified IQE is 20%, the relative enhancement of IQE can be greater than 50%, without utilizing the surface-plasmon coupling effect. Based on the simulation results, the "green gap" problem of GaN-based green LEDs is expected to be mitigated significantly by optimizing flip-chip LED structures to maximize the Purcell effect.

다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발 (DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN)

  • 허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF

햅틱 인터페이스를 위한 물리기반 변형체 실시간 시뮬레이션 (Physics-based Real-time Simulation of Deformable Body for Haptic Interface)

  • 전성기;최진복;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.557-562
    • /
    • 2004
  • For constructing virtual environment it is more natural to model object as deformable body than as rigid body. High accuracy of simulation of model and low-latency computational cost for real-time simulation should be guaranteed. We pre-compute Green function through finite element analysis of deformable body and it is possible to simulate deformation of body in real-time environment using Capacitance Matrix Algorithm. Also, the capacitance matrix algorithm enables to construct the haptic rendering which serves the reaction force through a haptic device. The Newmark scheme is used for the more realistic haptic rendering and dynamic simulation in real-time.

  • PDF

Monte Carlo Simulation of Small Photon Beam Measurements by Beam Intensity Scanner System(BISS)

  • Park, Kwangyl;Vahc, Young-Woo;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.282-284
    • /
    • 2002
  • We have developed and used BISS as a radiation detector to verify patient dose and determine the physical characteristics of beams used in Stereotatic Radio Surgery(SRS) and Intensity Modulated Radiation Therapy(IMRT). In order to confirm the function and accuracy of our BISS, we simulate our measurements by BISS under the radiation of 6MV photons from a Varian Clinac 21EX equipped with a 60 leaf pairs MLC. For the simulation based on the Monte Carlo algorithm, which remains the most comprehensive and accurate theoretical method to verify beam profiles, we use the BEAM code. Compared with the measurements by BISS, our simulation of variously shaped phantom measurements show good agreements. Our simulation results can be used as a theoretical standard to compare and confirm measurements by BISS and other dosimeters such as ultramicro cylindrical ionization chamber(UCIC) and radiographic film.

  • PDF

Experimental and simulation study on the backstreaming positive ions on the quarter-size negative ion source for CRAFT NNBI test facility

  • Yongjian Xu;Yuwen Yang;Jianglong Wei;Ling Yu;Wen Deng;Rixin Wang;Yuming Gu;Chundong Hu;Yahong Xie
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.546-551
    • /
    • 2024
  • As an effective methods of plasma heating, neutral beam injection (NBI) systems based on negative hydrogen ion sources will be utilized in future magnetic-confinement nuclear fusion experiments. Because of the collisions between the fast negative ions and the neutral background gas, the positive ions are inevitable created in the acceleration region in the negative NBI system. These positive ions are accelerated back into the ion source and become high energy backstreaming ions. In order to explore the characters of backstreaming ions, the track and power deposition of backstreaming H+ beam is estimated using the experimental and simulation methods at NNBI test facility. Results show that the flux of backstreaming positive ions is 1.93 % of that of negative ion extraction from ion source, and the magnet filed in the beam source has an effect on the backstreaming positive ions propagation.

AuGe 액체금속 이온이 주입된 n-GaAs의 물성연구 (Physical Properties of AuGe Liquid Metal Ion Implanted n-GaAs)

  • 강태원;이정주;김송강;홍치유;임재영;정관수
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.63-70
    • /
    • 1989
  • 액체금속이온원으로 부터 발생한 AuGe 이온빔을 GaAs기판에 주입시킨 후 이 시료의 표면성분과 구조를 AES(Auger electron spectroscopy), RHEED(reflection high energy electron diffraction), SEM(scanning electron microscopy) and EPMA(electron probe microanalysis)등으로 조사하였으며 AES depth profile 실험결과를 이체충돌에 의한 Monte Carlo simulation과 비교하였다. AuGe 이온이 주입된 시료를 AES, EPMA로 측정한 결과 As의 preferential스피터링이 나타났으며 300$^{circ}$C로 열처리하면 Ga과 outdiffusion되었다. 또한 측정한 Au와 Ge의 depth profile은 이체충돌에 의한 Monte Carlo simulation의 결과와 잘 일치하였다.

  • PDF