• Title/Summary/Keyword: Physicochemical parameters

Search Result 326, Processing Time 0.022 seconds

Biological soil crusts impress vegetation patches and fertile islands over an arid pediment, Iran

  • Sepehr, Adel;Hosseini, Asma;Naseri, Kamal;Gholamhosseinian, Atoosa
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Background: Plant vegetation appears in heterogeneous and patchy forms in arid and semi-arid regions. In these regions, underneath the plant patches and the empty spaces between them are covered by biological soil crusts (moss, lichen, cyanobacteria, and fungi). Biological soil crusts lead to the formation and development of fertile islands in between vegetation patches via nitrogen and carbon fixation and the permeation of runoff water and nutrients in the soil. Results: The present study has investigated the association of biological soil crusts, the development of fertile islands, and the formation of plant patches in part of the Takht-e Soltan protected area, located in Khorasan Razavi Province, Iran. Three sites were randomly selected as the working units and differentiated based on their geomorphological characteristics to the alluvial fan, hillslope, and fluvial terrace landforms. Two-step systematic random sampling was conducted along a 100-meter transect using a 5 m2 plot at a 0-5 cm depth in three repetitions. Fifteen samplings were carried out at each site with a total of 45 samples taken. The results showed that the difference in altitude has a significant relationship with species diversity and decreases with decreasing altitude. Results have revealed that the moisture content of the site, with biocrust has had a considerable increase compared to the other sites, helping to form vegetation patterns and fertile islands. Conclusions: The findings indicated that biological crusts had impacted the allocation of soil parameters. They affect the formation of plant patches by increasing the soil's organic carbon, nitrogen, moisture and nutrient content provide a suitable space for plant growth by increasing the soil fertility in the inter-patch space.

Self-Nanoemulsifying Drug Delivery System of Lutein: Physicochemical Properties and Effect on Bioavailability of Warfarin

  • Yoo, Juno;Baskaran, Rengarajan;Yoo, Bong-Kyu
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • Objective of present study was to prepare and characterize self-nanoemulsifying drug delivery system (SNEDDS) of lutein and to evaluate its effect on bioavailability of warfarin. The SNEDDS was prepared using an oil, a surfactant, and co-surfactants with optimal composition based on pseudo-ternary phase diagram. Effect of the SNEDDS on the bioavailability of warfarin was performed using Sprague Dawley rats. Lutein was successfully formulated as SNEDDS for immediate self-emulsification and dissolution by using combination of Peceol as oil, Labrasol as surfactant, and Transcutol-HP or Lutrol-E400 as co-surfactant. Almost complete dissolution was achieved after 15 min while lutein was not detectable from the lutein powder or intra-capsule content of a commercial formulation. SNEDDS formulation of lutein affected bioavailability of warfarin, showing about 10% increase in $C_{max}$ and AUC of the drug in rats while lutein as non-SNEDDS did not alter these parameters. Although exact mechanism is not yet elucidated, it appears that surfactant and co-surfactant used for SNEDDS formulation caused disturbance in the anatomy of small intestinal microvilli, leading to permeability change of the mucosal membrane. Based on this finding, it is suggested that drugs with narrow therapeutic range such as warfarin be administered with caution to avoid undesirable drug interaction due to large amount of surfactants contained in SNEDDS.

A Study on Thermal Conduction in Oyster Shell Incorporating Gypsum Objects (굴패각 배합 석고재료의 열전도 특성 연구)

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • We investigated one-dimensional thermal conduction for gypsum objects incorporating oyster shell powder. We presumed that according to the portion of oyster shell in the hybrid structure conductive characteristics of that would also change as some physicochemical properties such as volatile organic compound (VOC) adsorption were found to be changed considerably. Based on Fourier's 2nd law of heat conduction an analytical analysis in a flat slab (one axis perpendicular to an infinite plane) was performed. We found that composition of oyster shell and conduction-related coefficients and parameters could greatly influence on the thermal profile of that conduction, and some model experiments also served for it in the affirmative.

Characteristics of Morphological and Physiological Changes during the Autolysis Process of Saccharomyces cerevisiae FX-2

  • Li, Xiao;Shi, Xiaodan;Zou, Man;Luo, Yudi;Tan, Yali;Wu, Yexu;Chen, Lin;Li, Pei
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.249-258
    • /
    • 2015
  • In this paper, the autolysis process of Saccharomyces cerevisiae FX-2 (S. cerevisiae FX-2) via, a variety of endogenous enzyme, was investigated systematically by analyzing changes in physicochemical parameters in autolysate, surface morphology and the internal structure of the yeast cells. As an explicit conclusion, the arisen autolysis depended on the pH and the optimal pH was found to be 5.5. Based on the experimental data and the characteristics of mycelia morphology, a hypothesis is put forward that simple proteins in yeast vacuolar are firstly degraded for utilization, and then more membrane-bound proteins are hydrolyzed to release hydrolytic enzymes, which arouse an enzymatic reaction to induce the collapse of the cell wall into the cytoplasm.

The Microsponge Delivery System of Itraconazole: Preparation, Characterization and Release Studies (이트라코나졸 마이크로스폰지의 약물 전달 시스템: 제조, 특성 및 방출 연구)

  • Cho, Young-Ho;Lee, Jong-Hwa;Kim, Hak-Hyung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. To improve the oral absorption and dissolution of poorly water-soluble itraconazole, microsponge system composed of $Eudragit^{(R)}$ E100 and polyvinyl alcohol(PVA) formulated by quasi-emulsion solvent diffusion method, and its physicochemical properties and pharmacokinetic parameters of itraconazole were studied. The microsponge of itraconazole were discrete free flowing micro sized particles with perforated orange peel like morphology as visualized by scanning electron microscope (SEM). Results showed that the drug loading efficiency, production yield, and particle size of itraconazole microsponge were affected by drug to polymer ratio, the volume of internal phase containing methylene chloride, stirring rate and the concentration of PVA used. Also, the results showed that the dissolution rate of itraconazole from the microsponges was affected by drug to polymer ratio. In other words, the release rate of itraconazole from microsponges was increased from at least 27.43% to 64.72% after 2 h. The kinetics of dissolution mechanism showed that the dissolution data followed Korsmeyer-Peppas model. Therefore, these results suggest that microsponge system can be useful for the oral delivery of itraconazole by manipulating the release profile.

Modeling of chloride diffusion in a hydrating concrete incorporating silica fume

  • Wang, Xiao-Yong;Park, Ki-Bong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.523-539
    • /
    • 2012
  • Silica fume has long been used as a mineral admixture to improve the durability and produce high strength and high performance concrete. And in marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. In this paper, we proposed a numerical procedure to predict the chloride diffusion in a hydrating silica fume blended concrete. This numerical procedure includes two parts: a hydration model and a chloride diffusion model. The hydration model starts with mix proportions of silica fume blended concrete and considers Portland cement hydration and silica fume reaction respectively. By using the hydration model, the evolution of properties of silica fume blended concrete is predicted as a function of curing age and these properties are adopted as input parameters for the chloride penetration model. Furthermore, based on the modeling of physicochemical processes of diffusion of chloride ion into concrete, the chloride distribution in silica fume blended concrete is evaluated. The prediction results agree well with experiment results of chloride ion concentrations in the hydrating concrete incorporating silica fume.

Effects of Penicillin G on Morphology and Certain Physiological Parameters of Lactobacillus acidophilus ATCC 4356

  • Khaleghi, M.;Kermanshahi, R. Kasra;Zarkesh-Esfahani, S.H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.822-829
    • /
    • 2011
  • Evidence shows that probiotic bacteria can undergo substantial structural and morphological changes in response to environmental stresses, including antibiotics. Therefore, this study investigated the effects of penicillin G (0.015, 0.03, and 0.06 mg/l) on the morphology and adhesion of Lactobacillus acidophilus ATCC 4356, including the colony morphotype, biofilm production, hydrophobicity, $H_2_O2$ formation, S-layer structure, and slpA gene expression. Whereas only smooth colonies grew in the presence of penicillin, rough and smooth colony types were observed in the control group. L. acidophilus ATCC 4356 was found to be hydrophobic under normal conditions, yet its hydrophobicity decreased in the presence of the antibiotic. No biofilm was produced by the bacterium, despite testing a variety of different culture conditions; however, treatment with penicillin G (0.015-0.06 mg/l) significantly decreased its production of $H_2_O_2$ formation and altered the S-layer protein structure and slpA gene expression. The S-protein expression decreased with 0.015 mg/l penicillin G, yet increased with 0.03 and 0.06 mg/l penicillin G. In addition, the slpA gene expression decreased in the presence of 0.015 mg/l of the antibiotic. In conclusion, penicillin G was able to alter the S-layer protein production, slpA gene expression, and certain physicochemical properties of Lactobacillus acidophilus ATCC 4356.

In vitro cytotoxicity and in vivo acute toxicity of selected polysaccharide hydrogels as pharmaceutical excipients

  • Kulkarni GT;Gowthanarajan K;Raghu C;Ashok G;Vijayan P
    • Advances in Traditional Medicine
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Polysaccharide hydrogels constitute a structurally diverse class of biological macromolecules with a wide range of physicochemical properties. They also constitute important members of the family of industrial water-soluble polymers. They find application in Pharmacy as binders, disintegrants, suspending, emulsifying and sustaining agents. According to the International Pharmaceutical Excipients Council (IPEC), an excipient must have an established safety profile. Hence, in the present study, in vitro cytotoxicity on Vero and HEp-2 cell lines, and in vivo acute toxicity in rats were carried out to establish the safety of polysaccharide hydrogels from the seeds of Plantago ovata and Ocimum basilicum. The in vitro cytotoxicity was determined by MTT and SRB assays. In the in vivo acute toxicity, the effects of three different doses of hydrogels (100, 200 and 400 mg/kg body weight) on food and water intake, body weight, biochemical and hematological parameters were studied. The results of in vitro did not show any cytotoxicity on both the cell lines used. In the in vivo acute toxicity, the hydrogels did not show any toxic symptoms in all three dose levels. This establishes the safety of the selected hydrogels. Hence, they can be used as excipients in pharmaceutical dosage forms.

Atmospheric Corrosion of Hot Dip Zinc Coated Steel in Coastal and Rural Areas of Vietnam

  • Tru, Nguyen Nhi;Duyen, Le Khac;Han, Tran Mai
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.241-246
    • /
    • 2017
  • The comparative results of corrosion testing in humid tropical atmosphere in rural and coastal areas for hot dipped zinc coatings are presented below. The test was conducted in outdoor conditions over a period of five years. The mass loss and other performance characteristics of two types of zinc coatings were evaluated, analysed and discussed in relation to the climatic and environmental parameters. The corrosion rates of the coatings exposed to coastal conditions were about three times higher than the corrosion rates appreciated in rural conditions. The data demonstrates that the corrosion process obeys an equation of the form $M=At^n$, where M is the loss of metal and t is the time of exposure. A and n are constants which values depend on the environmental characteristics and the physicochemical behavior of the corrosion products respectively. Corrosion is strongly influenced by atmospheric time of wetness (TOW) and airborne salinity. The nature and composition of corrosion products are also considered. Simonkolleite, a major crystalline phase, was found in the zinc corrosion products exposed to coastal conditions, while zinc hydroxide and zinc hydrosulfate are easily found in rural settings.

Long-term Variation and Characteristics of Water Quality in the Asan Coastal Areas of Yellow Sea, Korea (아산연안 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Hyung-Chul;Kim, Pyoung-Joong;Park, Gyung-Soo;Park, Jeung-Sook
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1411-1424
    • /
    • 2007
  • Long-term trends and distribution patterns of water quality were investigated in the Asan coastal areas of Yellow Sea, Korea from 1975 to 2005. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids(SS), chemical oxygen demand(COD), dissolved oxygen(DO) and nutrients. Spatial distribution patterns were not clear among stations but the seasonal variations were distinct except COD, SS and nitrate. The trend analysis by principal component analysis(PCA) during twenty years revealed the significant variations in water quality in the study area, Annual water qualities were clearly discriminated into 4 clusters by PCA; year cluster 1988-1991, 1994-1997, and 1992-1993/1998-2005. By this multi-variate analysis we can summarize the annual trends as the followings; salinity, suspended solids and dissolved oxygen tended to increase from late 1980's, increased pH and COD from 1992, and decreased salinity and increased nitrogen and COD from 1990 due to the runoff frow agricultural lands causing eutrophication.