• Title/Summary/Keyword: Physical optics

Search Result 281, Processing Time 0.023 seconds

Propagation of surface polaritons at the interface of metal and left-handed metamaterial (금속과 왼손잡이 메타-물질의 경계면에서 형성되는 표면 폴라리톤의 전파 특성)

  • 윤재웅;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • At the interface of two materials with frequency-dependent material-parameters of permittivity and permeability, there may exist two kinds of surface polaritons: surface electric-polaritons(SEPs) and surface magnetic-polaritons(SMPs). Possible combinations of the material-parameters to support propagation of the two surface polaritons are suggested at the interface between metals and metamaterials such as a left-handed material. Dispersion relations are also derived in order to characterize frequency dependence of propagation of the SEP and SMP. It is found that only one propagation mode of SEP or SMP is allowed at a given set of four material parameters, and that counter-propagation of the phase and group velocities of the propagation mode can be observed even in the case when there are no double negative(or, negative-index) materials. Physical origin of the counter-propagation of the group velocity is proposed by evaluating the ratio of two electromagnetic-energy densities of a surface polariton propagating along within the two interface media, and it is confirmed by the dispersion relations.

Conceptual design and RCS property research of three-surface strike fighter

  • Yue, Kuizhi;Tian, Yifeng;Liu, Hu;Han, Wei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2014
  • This paper mainly focuses on the conceptual design and stealth performance of the three-surface military aircraft. A three-dimensional (3-D) digital mock-up of the three-surface strike fighter with stealth feature was designed and the schemes of carrying missiles were analyzed in CATIA. Based on physical optics principle and the Method of Equivalent Currents (MEC), a numerical simulation of the RCS feature of the aircraft was carried out with RCSPlus which is a software designed by Beihang University. The paper contributes to the RCS feature analysis of the whole plane and different parts on X-band, S-band and UHF-band and a comparison of RCS feature to Su-37 and T-50 military aircraft is drawn. On X-band, the pitch angle of the incident wave was $0^{\circ}$, and the result shows: (1) Compared with Su-37 aircraft, the forward scattering RCS of the three-surface strike aircraft was reduced to 14.9%, the side scattering RCS to 9.6% and the back scattering RCS to 40.2%. (2) Compared with T-50 aircraft, the forward scattering RCS was reduced to 38.61%, and the side scattering RCS to 67.26%. This paper should be useful for researchers in conceptual design and stealth technology of the military aircraft.

Determination of optical constants for organic light emitting material of Alq3 using Forouhi-Bloomer dispersion relations (포로히-블루머(Forouhi-Bloomer) 분산식을 이용한 유기발광물질 Alq3의 광학 상수 결정)

  • 정부영;우석훈;이석목;황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • We determined the optical constants of organic light emitting material of Alq$_3$ in a spectral range between 1.5 and 6 eV using the physical model introduced by Forouhi and Bloomer[Phys. Rev. B 34, pp. 7018-7026, 1986.]. The initial parameters of $A_i,\;B_i,\;C_i$ of Forouhi-Bloomer dispersion relations were determined from the absorption peaks and widths of absorption spectra of the Alq$_3$ film. The refractive index of substrate, a fused silica, is derived from the Sellmeier equation with the measured transmittance and reflectance spectra. Then, the complex refractive index and thickness of the Alq$_3$ film were calculated by use of a nonlinear least square fitting program with the Forouhi-Bloomer dispersion relation and the measured transmittance and reflectance spectra.

Autofocus of Infinity-Corrected Optical Microscopes by Confocal Principle and Fiber Source Modulation Technique (공초점 원리와 광섬유 광원 변조를 이용한 무한보정 현미경 자동초점)

  • Park, Jung-Jae;Kim, Seung-Woo;Lee, Ho-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.583-590
    • /
    • 2004
  • The autofocus is one of the important processes in the automated vision inspection or measurements using optical microscopes, because it influences the measuring accuracy. In this paper, we used the confocal microscope configuration based on not a pinhole but a single-mode optical fiber. A single mode fiber has the functions of source and detector by applying the reciprocal scheme. As a result, we acquired a simple system configuration and easy alignment of the optical axis. Also, we embodied a fast autofocus system by acquiring the focus error signal through a source modulation technique. The source modulation technique can effectively reduce physical disturbances compared with objective lens modulation, and it is easily applicable to general optical microscopes. The focus error signal was measured with respect to the modulation amplitude, reflectance of the specimen and inclination angle of the measuring surface. The performance of the proposed autofocus system was verified through autofocusing flat mirror surface. In addition, we confirmed that source modulation rarely degrades the depth resolution by the comparison between the FWHMs of axial response curves.

Science Teachers' Perception of the Refractive Index of Media (굴절률에 대한 과학교사들의 인식)

  • Park, Sang-Tae;Yeom, Jun-Hyeok;Yoon, Yeo-Won;Seok, Hyojun
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.334-338
    • /
    • 2017
  • This research aims at investigating science teachers' perception of the refractive index of materials, and thus achieving proper information transmission and teaching of refractive index. Specifically, we have made questionnaires on what physical factors influence the refractive index of a liquid easily available in secondary schools. It was found that 80.0% of science teachers perceived that the density has the greatest influence on the refractive index, among a variety of factors such as molecular structure, the number of molecules per unit volume, mass of each molecule, and the wavelength of light, to mention just a few. This may be due to the fact that current textbooks deal with the refraction of light based on analogy to a mechanical wave. Such a misunderstanding may lead to confusion and misunderstanding for students.

Simulation of Manipulating Various Pulsed Laser Operations Through Tuning the Modulation Depth of a Saturable Absorber (포화 흡수체의 투과변조깊이 조절을 통한 다양한 펄스상태 조작 방법에 관한 전산 모사)

  • Gene, Jinhwa;Yeom, Dong-Il;Kim, Byoung Yoon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.351-355
    • /
    • 2017
  • In this paper, we conduct a simulation of manipulating various pulsed laser operations through tuning the modulation depth of the saturable absorber in a laser cavity. The research, showing that various pulsed operations could be manipulated from Q-switching through Q-switched mode locking to mode locking by tuning the modulation depth of the saturable absorber in a cavity, has been studied by experimental means. We conduct a simulation with the Haus master equation to verify that these experimental results are consistent with expectations from theory. The time dependence of the gain was considered to express Q-switching fluctuation through applying a rate equation with the Haus master equation. Laser operation was manipulated from mode locking through Q-switched mode locking to Q-switching as modulation depth was increased, and this result agreed well with the theoretical expectation.

DEEP-South: The Progress Report

  • Moon, Hong-Kyu;Kim, Myung-Jin;Park, Jintae;JeongAhn, Youngmin;Yang, Hongu;Lee, Hee-Jae;Kim, Dong-Heun;Roh, Dong-Goo;Choi, Young-Jun;Yim, Hong-Suh;Lee, Sang-Min;Kwak, SungWon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2018
  • Deep Ecliptic Patrol of the Southern Sky (DEEP-South) observation is being made during the off-season for exoplanet survey, using Korea Microlensing Telescope Network (KMTNet). An optimal combination of its prime focus optics and the 0.3 billion pixel CCD provides a four square degrees field of view with 0.4 arcsec/pixel plate scale which is also best suited for small body studies. Normal operation of KMTNet started in October 2015, and a significant portion of the allocated telescope time for DEEP-South is dedicated to targeted observation, Opposition Census (OC), of near-Earth asteroids for physical and taxonomic characterization. This is effectively achieved through multiband, time series photometry using Johnson-Cousins BVRI filters. Uninterrupted monitoring of the southern sky with KMTNet is optimized for spin characterization of a broad spectrum of asteroids ranging from the near-Earth space to the main-belt, including binaries, asteroids with satellites, slow/fast- and non-principal axis-rotators, and thus is expected to facilitate the debiasing of previously reported lightcurve observations. Our software subsystem consists of an automated observation scheduler, a pipelined data processing system for differential photometry, and an easy-to-use lightcurve analysis toolkit. Lightcurves, spin periods and provisional determination of class of asteroids to which the lightcurve belongs will be presented, using the dataset from first year operation of KMTNet. Our new taxonomic classification scheme for asteroids will also be summarized.

  • PDF

Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching (임피던스정합을 이용한 레이더반사면적 최소화 단층형 전파흡수구조 설계)

  • Jang, Byung-Wook;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.118-124
    • /
    • 2015
  • The design of radar absorbing structures(RAS) is a discrete optimization problem and is usually processed by stochastic optimization methods. The calculation of radar cross section(RCS) should be decreased to improve the efficiency of designing RAS. In this paper, an efficient method using impedance matching is studied to design RAS for minimizing RCS. Input impedance of the minimal RCS for the specified wave incident conditions is obtained by interlocking physical optics(PO) and optimizations. Complex permittivity and thickness of RAS are designed to satisfy the calculated input impedance by a discrete optimization. The results reveal that the studied method attains the same results as stochastic optimization which have to conduct numerous RCS analysis. The efficiency of designing RAS can be enhanced by reducing the calculation of RCS.

Simulation of Dynamic EADs Jamming Performance against Tracking Radar in Presence of Airborne Platform

  • Rim, Jae-Won;Jung, Ki-Hwan;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo;Choi, Seung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.475-483
    • /
    • 2015
  • We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degree-of-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF