International Journal of Computer Science & Network Security
/
제22권10호
/
pp.374-388
/
2022
Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.
This study examined the characteristics of the relationship of home environment variables and preschool children's intelligence, learning readiness and socio-emotional developments. The subjects of this study were 63 children at age five and their mothers. Instruments included the children's intelligence test, preschool inventory for learning readiness, the socio-emtional rating scale and the inventory of HOME. The data of the present study were analyzed by the statistical methods of Pearson's product-moment correlation coefficient and step-wise multiple regression analysis. The kinds of HOME variables that significantly predict children's intelligence were "need gratification and avoidance of restriction" "quality of language environment" "play materials" "aspects of physical environment" "organization of stable and predictable environment". The variables that significantly predict children's socio-emotional developments were "breath of experience" "fostering maturity and independence" "developmental stimulation". All of the HOME variables were not significantly predict children's learning readiness. The kinds of HOME factors that significantly predict children's intelligence were factor II and factor III. Factor I predicted children's socio-emotional developments significantly. All of the HOME factors were not significantly predicted children's learning readiness.
In modern society, the optimal physical environment is constantly changing due to IT development, and it is provided with convenience. In this age environment, the children are growing up thinking that the value of community consciousness through relationship with others is not important in the social reality in which various ways and environments that can be done by themselves are succeeding. No matter how rapidly the world changes, a diverse learning environment is needed that establishes desirable human relationships and recognizes community consciousness and values. The purpose of this study was to investigate the effects of general children(elementary school 4th, 5th, and 6th graders) on the communication and peer relationship of the children participating in the archery experiential learning program, to emphasize the importance of physical activity programs, and also by analyzing the relationship between communication and improvement of peer relationship and to understand the effect of the archery experiential training learning which is one of exercise program. In order to verify the research problems, 30 experimental group and 30 comparative group were composed of 4th, 5th, and 6th grade elementary schools in Gwangsan-gu, Gwangju metropolitan city. The experiment group was participated in the archery experiential learning program for a total of 10 sessions, once a week for 60 minutes, and conducted a questionnaire survey. In this study, we examined the effect of archery experiential learning program on improving children 's communication and peer relationship ability. Thus, it showed that archery experiential learning program can be one of the important educational methods to promote the healthy character and development of children.
Kim, Seong-Kyu;Lee, Mi-Jung;Jang, Eun-Sill;Lee, Young-Eun
Journal of Multimedia Information System
/
제9권1호
/
pp.51-60
/
2022
This paper raised the need to examine how the online education environment triggered by COVID-19 and the smart learning environment can be established in consideration of the improvement of education and learning through learning analysis. Many studies are being conducted in Korea, and the Ministry of Education is continuously striving to build a smart school by promoting strategies for promoting smart education on the way to a talent powerhouse. Nevertheless, there is no unified definition of smart learning, and it can be seen as customized (individualized) learning using smart devices. However, most of the discussions on the construction of smart schools so far have limitations in that they are limited to physical spaces. Accordingly, the opinions of teachers and learners were not sufficiently reflected in the establishment of the facility. This study intends to study smart learning in various departments. In addition, the subjects students in charge of the co-researcher of this study were analyzed. The total number of subjects was 951, and 434 responded to this study survey. In addition, students were well accepting the online environment, and in the future, regardless of COVID-19, research will be presented to improve mutual communication between professors and students in smart learning.
도로 포장에 널리 사용되는 아스팔트는 도로가 노출되는 환경에 따라 요구되는 물리적 특성이 상이하다. 이에 따라 첨가제의 배합에 따라 아스팔트가 어떤 물리적 특성을 나타내는지 평가하고 도로의 교통, 기후 환경에 맞추어 적절한 배합을 선택하는 것이 아스팔트 도로의 수명을 확보하기 위해 필수적이다. 아스팔트의 다양한 물리적 특성 중 소성변형에 대한 저항성을 측정하기 위해서는 Dynamic shear rheometer(DSR) 테스트를 주로 사용한다. 하지만 DSR 테스트는 실험 세팅에 따라 결과가 상이하고 특정 온도 범위 내에만 측정이 가능한 단점이 있다. 따라서 본 연구에서는 DSR 테스트의 단점을 극복하고자, Atomic force microscopy로부터 수집된 이미지를 학습하여 레올로지적 특성을 예측하고자 했다. 딥러닝 아키텍처 중 하나인 EfficientNet을 통해 이미지를 학습하였고 딥러닝 모델의 한계인 많은 데이터를 요구한다는 점을 극복하기 위해 전이학습을 이용하여 학습을 진행하였다. 학습된 모델은 이종의 첨가제를 사용하였음에도 높은 정확도로 아스팔트 바인더의 레올로지적 특성을 예측하였다. 특히, 전이학습을 사용하지 않았을 때와 비교하여 빠르게 학습이 가능했다.
The purpose of this study which was conducted by framing of standardized advanced emergency care instructor qualification course outline and training competent instructor Course development based on following educational principle and it would be expected more improved aspect. Advanced Emergency care Instructor Qualification Course Development (1) based on advanced emergency care instructor job analysis and paramedic job description. (2) Learning of emergency care instructor qualification course is continuous. It is important to begin at the learner's level of knowledge and to relate new learning to information the learner needs. (3) Learning of emergency care instructor qualification course is purposeful and must make sense to the learner. Progress in learning must make sense to the learner. Progress in learning must be constantly appraised through feedback. The purpose of learning BLS information and skills must be kept in sharp focus. (4) Learning involves as many senses as possible. The more stimulating a learner activity is to the senses, the longer the information will be retained. Conservative figures indicate that 75% of what is heard is for-gotten after 2 days. It has been said that learners remember (5) Learning activities must be appropriate for the emergency situation through the PBL educational method. In BLS lecture skill learning, the greatest proportion of class time should be spent in manikin practice, using performance sheets as a learning tool or guide. (6) Learning must be stimulating. Instructors can motivate learners by helping them achieve higher levels of proficiency and encouraging other levels of course completion, such as instructor and instructor trainer. (7) Learning is affected by the physical and social environment. The physical environment should be conducive to both the kind of learning taking place and the activities used for learning. Advanced emergency care instructor qualification course organized educational psychology, educational methodology I,II,III, educational material making skill, lecture & conversational skill, BLS theory & pratice lecture skill, minic lecture designed PBL module. test of minic lecture & pratice lecture skill. Advanced emergency care instructor qualification course continued to active instructor training and motivated to active EMS system.
Objective: The purpose of this study is to examine the effect of the childcare environment on childcare efficacy of childcare teachers. Methods: The participants in the study were 274 childcare teachers working at childcare centers. The childcare environment was divided into physical environment and the work support environment. Results: The results of this study are as follows. First, there was a significant difference in childcare efficacy depending on the age and career of the childcare teacher. Second, the childcare environment of the childcare center showed a static correlation with the childcare efficacy of the childcare teacher in both the physical environment and the work support environment. Third, the physical environment of the day care center had an affect on child care efficacy. Among the subfactors, furniture for routine care, play and learning had a significant impact. Fourth, the work support environment of the childcare center had an affect on childcare efficacy of the childcare teacher. Among the subfactors, staff interaction and cooperation, and opportunities for professional growth had a significant impact. Conclusion/Implications: In order to enhance childcare efficacy of childcare teachers, a high quality childcare environment should be established.
Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.
The purpose of this study is to make interior environment which can support the education effectively through acceptance of the requirements of users about the environmental factors of learning spaces for the visually impaired students. For them, researcher investigated the literature cited and did the field survey. And also, this researcher analyzed user's satisfaction extent for structure, design, and technical environment factors by the evaluation elements. On the basis of the result of analysis, Two rooms which had big problems for physical environment were selected. And then the design recommendations focusing on environmental factors - circulation, furniture arrangement, colour, lighting etc. - were proposed by this researcher on the basis of space user's requriement.
Basic precondition for effective curriculum on learning activities to take place, the internal and external environment of the school facilities, improve the environment of the classroom space and etc. Specifically, the use of classroom space, hardly learners improve their academic motivation to achievement tend to concentrate within the party regularly scheduled class hours. Physical environment surrounding them is giving considerable impact for behavioral psychological and bodily change of the learners. In this study, we are focused on the form of the learner in the general classroom space and classroom environment that can increase the learning effect will be examined. Consequently, What is appropriate classroom environment for learning increase the concentration of elements are presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.