• Title/Summary/Keyword: Physical error

Search Result 844, Processing Time 0.032 seconds

Differences in Reposition Error Among Male Compared With Female (20대 정상 성인 남녀의 요추 원위치 돌아오기 오류의 차이)

  • Kim Jae-Hun;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.82-89
    • /
    • 2003
  • Although many current low back pain exercise incorporate proprioceptive training, very little research has been performed on proprioception of the low back. To determine wether reposition error is different in male than female. Eighteen young individuals took part in the research, seven male and eleven female. The 3-dimensional position of the lumbar was measured with a CMS70P. Reposition error was calculated as the absolute difference between the neutral position and return position. No significant differences in reposition error were found between male and female. No significant correlations were identified between reposition error and movement direction.

  • PDF

Determination of Soil Sample Size Based on Gy's Particulate Sampling Theory (Gy의 입자성 물질 시료채취이론에 근거한 토양 시료 채취량 결정)

  • Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2011
  • A bibliographical review of Gy sampling theory for particulate materials was conducted to provide readers with useful means to reduce errors in soil contamination investigation. According to the Gy theory, the errors caused by the heterogeneous nature of soil include; the fundamental error (FE) caused by physical and chemical constitutional heterogeneity, the grouping and segregation error (GE) aroused from gravitational force, long-range heterogeneous fluctuation error ($CE_2$), the periodic heterogeneity fluctuation error ($CE_3$), and the materialization error (ME) generated during physical process of sample treatment. However, the accurate estimation of $CE_2$ and $CE_3$ cannot be estimated easily and only increasing sampling locations can reduce the magnitude of the errors. In addition, incremental sampling is the only method to reduce GE while grab sampling should be avoided as it introduces uncertainty and errors to the sampling process. Correct preparation and operation of sampling tools are important factors in reducing the incremental delimitation error (DE) and extraction error (EE) which are resulted from physical processes in the sampling. Therefore, Gy sampling theory can be used efficiently in planning a strategy for soil investigations of non-volatile and non-reactive samples.

The Comparison of Trunk Repositioning Errors in Individuals with and without Low Back Pain at Different Postures (요통 환자와 정상인의 자세에 따른 체간 위치 오류 비교)

  • Yuk, Goon-Chang;Han, Jin-Tae;Shin, Hyun-Suk;Lee, Ho-Geon;Park, Rea-Joon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.2
    • /
    • pp.63-74
    • /
    • 2008
  • Purpose : The purpose of this study was to compare trunk repositioning errors between subjects with and without low back pain in sitting and standing. Methods : Total 81 participants were recruited who consisted of 41 subjects with low back pain and 40 normal subjects. The subjects were instructed to replicate the predetermined target positions of the trunk toward upright and $30^{\circ}$ flexion in sitting and standing. During each of movement, digital inclinometer was used to measure the angular movement of $T_{12}$ spinal process. Repositioning error was calculated as the absolute difference between the predetermined target positions and replicated target positions. Results : In subjects with low back pain, upright repositioning error was $1.26^{\circ}{\pm}0.14^{\circ}$ in sitting and $1.55^{\circ}{\pm}0.24^{\circ}$ in standing, and $30^{\circ}$ flexion repositioning error was $3.23^{\circ}{\pm}0.33^{\circ}$ in sitting and $5.50^{\circ}{\pm}0.50^{\circ}$ in standing. In subjects without low back pain, upright repositioning error was $1.38^{\circ}{\pm}0.15^{\circ}$ in sitting and $1.67^{\circ}{\pm}0.18^{\circ}$ in standing, and flexion repositioning error was $2.61^{\circ}{\pm}0.28^{\circ}$ in sitting and $3.70^{\circ}{\pm}0.52^{\circ}$ in standing. It was demonstrated that flexion repositioning error increased significantly in standing position. In subjects with low back pain, $30^{\circ}$ flexion repositioning error was significantly higher in standing than in sitting. Conclusion : The repositioning error of subjects with low back pain increased during flexion and it implies that some aspects of proprioception are decreased in subjects with low back pain. Therefore, it will be emphasis that a clinical trial to increase the trunk flexion stability of subjects with low back pain in standing.

  • PDF

A method and analysis of human-error management of a semiconductor industry (반도체산업에서의 인적오류제어방법 및 연구)

  • Yoon Yong-Gu;Park Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • Basis frame-work's base in a semiconductor industry have gas, chemical, electricity and various facilities in bring to it. That it is a foundation by fire, power failure, blast, spill of toxicant huge by large size accident human and physical loss and damage because it can bring this efficient, connect with each kind mechanical, physical thing to prevent usefully need that control finding achievement factor of human factor of human action. Large size accident in a semiconductor industry to machine and human and it is involved that present, in system by safety interlock defect of machine is conclusion for error of behaviour. What is not construing in this study, do safety in a semiconductor industry to do improvement. Control human error analyzes in human control with and considers mechanical element and several elements. Also, apply achievement factor using O'conner Model by control method of human error. In analyze by failure mode effect using actuality example.

Influence of the Duration of Smartphone Usage on Flexion Angles of the Cervical and Lumbar Spine and on Reposition Error in the Cervical Spine (스마트폰 사용시간이 목뼈 및 허리뼈의 굽힘각도와 목뼈의 재현오차에 미치는 영향)

  • Kim, Yang-Gon;Kang, Min-Hyeok;Kim, Ji-Won;Jang, Jun-Hyeok;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • The purpose of this study was to assess the influence of the duration of smartphone usage on cervical and lumbar spine flexion angles and reposition error in the cervical spine. The study included 18 healthy smartphone users (7 males and 11 females). We measured the kinematics of the upper and lower cervical and lumbar spine flexion angles and the reposition error of the upper and lower cervical spine after 3 s and 300 s smartphone use in sitting. A paired t-test was used to compare the effects of the duration of smartphone usage on the kinematics of cervical and lumbar spine flexion angles and reposition error. The flexion angles of the lower cervical and lumbar spine and the reposition error in the upper and lower cervical spine were significantly increased after 300 s smartphone of use (p<.05). However, the flexion angle of the upper cervical spine was not significantly different between the 3 s and 300 s smartphone of use (p>.05). These findings suggest that prolonged use of smartphones can induce changes in cervical and lumbar spine posture and proprioception in the cervical spine.

Immediate Effect of Calf Muscle Kinesio Taping on Ankle Joint Reposition Sense and Force Sense in Healthy Elderly

  • Han, Jin-Tae
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.4
    • /
    • pp.193-197
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the immediate effects of calf muscle Kinesio taping on ankle joint reposition sense (JRS) and force sense (FS) in healthy elderly. Methods: Thirteen healthy elderly subjects were participated in this study. The error of ankle JRS and FS was evaluated by 3D motion capture device and digital dynamometer depending on three different taping conditions (Kinesio taping, sham taping, and no taping) respectively. All of subjects were asked to perform a proprioceptive task of ankle JRS and FS. One-way repeated ANOVA test was used to compare the error of JRS and FS depending on three different taping conditions. Results: With Kinesio taping over calf muscle, ankle joint reposition sense error and force sense error significantly decreased, if compared with a sham taping or no taping condition. Conclusion: To apply Kinesio taping over calf muscle could enhance ankle proprioceptive sense in the elderly people.

The Factor of Knee Joint Function in Women (여성의 무릎관절 기능 영향요인)

  • Lee, Hyun-Ok;Yang, Kyung-Hye
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.67-75
    • /
    • 2010
  • Purpose: The purpose of this is to identify the relationship among the age, body mass index(BMI) and exercise frequency(EF) with knee joint position sense in korean healthy women. Methods: Healthy women of 328 who participated in this study were tested knee joint position sense; reposition error was measured with a Myrin goniometer. Each reposition error was analyzed using descriptive statics, pearson correlation coefficients, and stepwise multiple regression. Results: The mean reposition error by age groups was significant decrease getting older. The mean reposition error by BMI groups was significant decrease getting higher. And the mean reposition error by EF groups was significant decrease getting lower. The knee joint position sense showed a significantly correlation with age(r=0.36, p=.00), BMI(r=0.34, p=.00) and EF(r=-0.50, p=.00). The most powerful predictor of knee joint position sense was EF. The reposition error according to stepwise multiple regression is $3.36+(-2.64){\times}EF+0.13{\times}age$, and account for 46%($R^2=0.46$) of the variance in the knee joint position sense. Conclusion: The older the women are, for prevent of knee injuries due to decreased joint position sense, regular exercise is essential factor.

  • PDF

The Adverse Effect of Proprioceptive Sense in Head-Neck according to Smartphone Usage

  • Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.54-57
    • /
    • 2018
  • Purpose: Most studies have reported pain in the head-neck and upper-limbs according to smartphone usage, which is related to the proprioception sense in the head and neck, but there have been few studies. Therefore, the aim of this study was identify the adverse effects of the proprioceptive sense in the head-neck according to smartphone usage. Methods: Twenty-seven young adults (male: 9, female: 18) were enrolled in this study. The proprioceptive sense was measured through the joint reposition sense error and neural positon error in the head-neck during smartphone usage for 0, 5, and 20 minutes. The Noraxon MyoMotion system was used to record the joint position angle and neutral positon in the head-neck. One-way repeated ANOVA was used to identify the differences between the three smartphone use durations and the least-squares difference was used as a post hoc test. The data were analyzed using SPSS 18.0 software. Results: The joint reposition sense error and neural positon error in the head-neck were significantly different among the 0, 5, and 20 minutes of smartphone usage (p<0.05). In the post hoc test, the joint reposition sense error and neural positon error showed a significant difference between smartphone use for 0 minute and 5 minute, and between smartphone use for 0 minute and 20 minutes. Conclusion: This study suggests that smartphone use within 5 minutes can have adverse effects on the proprioceptive sense. Therefore, it is necessary to consider the appropriate use time and break time when using smart phones.

Effects of Muscle Fatigue of Upper Extremity Flexor on Joint Sense (상지 굴곡근피로가 주관절의 위치 감각에 미치는 영향)

  • Kim, Chang-Yeop;Kim, En-Hye;Oh, Yeon-Kyeung;Oh, Tae-Young
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2012
  • Background and Purpose : This study was to analysis effects of muscle fatigue on error of elbow joint sense. Methods : A total 19 healthy student(men = 10, women = 9) who did't have any problem of musculoskeletal system in upper extremities participated this study. we divided two groups into young group(n = 10, $19.67{\pm}.5$) and old group(n = 9, $28.56{\pm}1.5$). In order to evoke muscle fatigue of elbow flexor, we used Biodex, and participations performed concentric contraction of elbow flexor 150 numbers as well as we measured error of joint sense using by Biodex. We collected data just after, 30min, 2hour, 24hour after evoked muscle fatigue, and we finanlly acquired average value of three times measured joint sense of elbow joint. And we calculated value of percentage of error of joint sense. We analyzed collected data by repeated ANOVA, ANOVA using by SPSS ver.12.0 program. Result : This study showed that there was no significantly effects between groups and within groups, we could see that there was significantly difference among duration by each group of age, and sex(p<.05). Conclusion : The error of joint position sense presented highest value just period after evoked muscle fatigue compared after 30 min, 2 hours, 24 hours, and we can't find out interaction between duration and age and sex.

  • PDF

The Correlation between Power Error and Velocity Error according to the Condition and Frequency of Self-Controlled Feedback during Knee Extension

  • Yoon, Jung Gyu
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.4
    • /
    • pp.1602-1607
    • /
    • 2018
  • This study examined the correlation between power error (PE) and velocity error (VE) according to the condition and frequency of self-controlled feedback (SCF) during knee extension. One hundred participants were randomly assigned to 30% SCF, 70% SCF, 30% yoked feedback (YF), 70% YF and control group, respectively. The SCF group was provided with feedback when they requested it, whereas the YF group did not influence the feedback schedule. Participants in the control group were not given any visual feedback during the experiment. The isotonic, isometric, and isokinetic dynamometer (PRIMUS RS, BTE, USA) was used to measure the power and velocity error during knee extension. The collected data was analyzed using a Pearson test and SPSS 21.0. The correlation between PE and VE according to the condition and frequency of feedback on each phase during knee extension was significant. Both PE and VE were significantly higher when the feedback was provided with high frequency, passive, and no feedback. Our study suggests that application of SCF can help to improve the proprioception of the healthy person while reducing errors through low frequency and active feedback.