• Title/Summary/Keyword: Physical compatibility

Search Result 145, Processing Time 0.023 seconds

Morphology Formation and Application of Interpenetrating Polymer Network (IPN) Materials (Interpenetrating Polymer Network(IPN)의 모폴로지 형성과 그 응용)

  • Kim, Sung-Chul
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Interpenetrating polymer network (PN) is a mixture of network polymers. The characteristics of IPN material is the control of morphology during the IPN synthesis. By controlling the relative kinetics of chemical reaction (as well as gellation) and phase separation, the morphology of IPN can be controlled to obtain materials with nano-scale domain and also the co-continuous phase. Other important advantage is the fact that the morphology is permanent due to the presence of the physical interlocking between the networks. The combination of hydrophilic polyurethane and hydrophobic polystyrene in IPN form provides enhanced blood compatibility due to the co-existence of the hydrophilic and hydrophobic domains in nano-scale on the surface. The reaction temperature, reaction pressure and the degree of crosslinking were varied during the IPN synthesis and the morphology and blood compatibility of the resulting IPN materials were studied.

Physically Compatible Characteristic Length of Cutting Edge Geometry (공구날 특이길이의 물리적 적합성 고찰)

  • Ahn, Il-Hyuk;Kim, Ik-Hyun;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.279-288
    • /
    • 2012
  • The material removal mechanism in machining is significantly affected by the cutting edge geometry. Its effect becomes even more substantial when the depth of cut is relatively small as compared to the characteristic length which represents the shape and size of the cutting edge. Conventionally, radius or focal length has been employed as the characteristic length with the assumption that the shape of cutting edge is round or parabolic. However, in reality, there could be various ways to determine the radius or focal length even for the same tool edge profile, depending on the region to be considered as cutting edge in the measured profile and the constraints to be set in constructing the best fitted circle or parabola. In this regard, the present study proposes various models to determine the characteristic length in terms of radius or focal length. Their physical compatibility are validated by carrying out 2D orthogonal cutting experiments using inserts with a wide range of characteristic length ($30{\sim}180\;{\mu}m$ in terms of radius) and then by investigating the correlation between the characteristic length and the cutting forces. Such validation is based on the common belief that the larger the characteristic length is, the blunter the cutting edge is and the higher the cutting forces are. Interestingly, the results showed that the correlation is higher for the radius or focal length obtained with a constraint that the center of best fitted circle or the focus of the best fitted parabola should be on the bisectional line of the wedge angle of tool.

Biocompatibilities of Some Synthetic Polymers in Films

  • Kim, Gha-Hee;Yoon, Jin-Hwan;Ree, Moon-Hor;Kim, Hee-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.257-257
    • /
    • 2006
  • We chose three synthetic polymers, poly(propylene carbonate) (PPC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and $Nafion^{(R)}$ that reveal different chemical and physical characteristics, and investigate their biocompatibilities to five different bacteria (that are most notorious for opportunistic and iatrogenic infections) and a human cell (HEp-2). The bacteria chosen in this study found to adhere onto the PPC and Nafion films but not to adhere on the PVFHFP film. On the other hand, both PVFHFP and Nafion films revealed good compatibility to HEp-2 and allowed the growth of the HEp-2 on the film surface but PPC showed poor compatibility to HEp-2. All results will be discussed with taking into account the surface characteristics of the polymers.

  • PDF

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

Influencing factors on purchase intention for smart healthcare clothing by gender and age - Focused on TAM, clothing attributes, health-lifestyle, and fashion innovativeness - (스마트 헬스케어 의류 구매의도에 대한 성별과 연령대별 영향 요인 - 기술수용모델(TAM), 의복속성, 건강라이프스타일, 패션혁신성을 중심으로 -)

  • Han, Heejung
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.6
    • /
    • pp.615-631
    • /
    • 2019
  • Smart healthcare clothing combines IoT, new technology, and clothing construction to perform specific care functions, and its utility has been expanding rapidly within aging and diversified societies. However, the related market remains at an early stage of development due to limited regulation, lack of consumer awareness, and the need for not only technical development but promotion plans for potential users. This paper aims to analyze factors influencing purchase intention for smart healthcare clothing with biosignal monitoring, including variables in the Technology Acceptance Model (TAM), clothing attributes, health-related lifestyle factors, and fashion innovativeness. A survey was conducted on a sample of 300 males and 300 females ranging in age from 20 to 50 years, and data were analyzed using SPSS 21.0. The results show that perceived usefulness, perceived aesthetic attributes, health responsibility, and fashion innovativeness were overall significant predictors of using smart healthcare clothing. Additionally, perceived ease of use and physical activity in the male subsample, and perceived compatibility within the female group, also had significant effects. Furthermore, age was a determining factor; for subjects in the 30s age group, perceived usefulness, compatibility, and health responsibility had significant positive associations. The results of this study can provide basic guidelines for designing merchandising plans to expand user acceptance of smart healthcare clothing.

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

A Study on the Chip Treatment of Ti-6Al-4V Alloy in Turning processing (Ti-6Al-4V 합금의 선삭가공시 칩처리성에 관한 연구)

  • Park J.N.;Lee S.C.;Cho G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1551-1554
    • /
    • 2005
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF

An Analysis of the Factors Affecting the Interaction between University and Industry (산학협동(産學協同)에 영향(影響)을 주는 요인분석(要因分析) - 문헌(文獻) 분석(分析)을 중심(中心)으로 -)

  • Min, Chang-Kee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1995
  • This paper discussed non-physical factors, such as the level of use of organizational channels and the level of R&D investment of the firm. It also explored physical factors such as the distance between the university and industry, transportation conditions between the two, and the availability (surplus capacity) of professors' or firms' research facilities that would affect the interaction such as the contacts in connection with research grants and consultations by professors to high-tech firms. This paper pointed out that the use of organization channel, the level of R&D investment, the availability research facilities of the university and high-tech firm, transportation conditions between the two, subject matter compatibility between professors' areas of expertise and firms' industrial activities, professors' (or staff) research capabilities and professors' (or staff) research times affect the interaction between the university and industry. It also found that the distance between the university and industry affects the interaction between the two in the opposite direction.

  • PDF

The Development of Motor Controller based on Network using Optic-EtherCAT (광 EtherCAT을 이용한 네트워크 기반 모터 제어기 개발)

  • Moon, Yong-Seon;Lee, Gwang-Seok;Seo, Dong-Jin;Bae, Young-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.467-472
    • /
    • 2008
  • In this paper, we design, implement and apply network physical layer to 100 BaseFx optical cable interface module based on industrial ethernet protocol which is physical layer of EtherCAT that has ensure its open standard ethernet compatibility which having been provided with real time of control in network of intelligent service robot, can be process numerous data to sensor and motor control system. Through BLDC motor control performance tests, we try to propose suitability as internal network of intelligent service robot and automation system.

A Study on the Cutting Characteristics in the Machining of Ti-6Al-4V Alloy using TiAlN Coated Tool (TiAlN 코팅공구를 사용한 Ti-6Al-4V 티타늄합급의 절삭특성에 관한 연구)

  • 이승철;박종남;조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.451-456
    • /
    • 2004
  • The Titanium has many superior characteristics Which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coate Tool which treated PVD (Physical Vapor Deposition). Experimental works are also executed to measure cutting force, chip figuration and surface roughness for different cutting conditions. As a result of study. Tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

  • PDF