• Title/Summary/Keyword: Physical and chemical properties

Search Result 2,916, Processing Time 0.036 seconds

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on The Growth, Yield of Rice Plants and Its Optimum Facilities (수환관개방법의 차이가 수도생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1937-1947
    • /
    • 1970
  • This experiment was conducted, making use of the 'NONG-RIM No, 6' a recommended variety of rice plant for the year of 1969. Main purpose of the experiment are to explore possibilities of; a) ways and means of saving irrigation water and, b) overcoming drought at the same time so that an increaded yield in rice production could be resulted in Specifically, it was tried to determine the effects of the Rotation Irrigation method combined with differentiated thickess of Lining upon the growth and Yield of rice production. Some of the major finding are summarized in the follows. 1) The Different thicknesses show a significant relationship with the weight of 1000 grains. In the case of 3cm Lined plot, the grain weight is 39.0 Grams, the heaviest. Next in order is 6 cm lined plnt, 5 day control plot, 6 day control plot. 2) In rice yield, it is found that there is a considerably moderate signicant relationship with both the different thickness of lining and the number of irrgation, as shown in the table No,7. 3) There is little or no difference among different plot in terms of; a) physical and chemical properties of soil, b) quality of irrgation water, c) climatic condition, and rainfalls. 4) It is found that there is no significant relationship between differences in the method of rotation irrgation and the number of ears per hill because of too much rainydays and low temperature during irrigation season. 5) In uyny1-treated plots, it is shown that there is on difference among different plots, but the irrigation water requirement saved as much as 1/2 to actual irrigation water compare to uncontroled plot. 6) The irrigation water requirement for 48 days is saved as much 67% compared to uncontroled plot, the order are; the 9cm lined plot, the plot of vinyl with no hole, the plot with a hole of $1cm/m^2$ as shows in fig 15. 7) The rate of percolation of 40-30mm/day is decreased to 30-20/day. It is found that the decreasad rate of percolation due to vinyl-cutoff in footpath. 8) The growing condition was fine, and there was no found that decease and lageing as always submerged plot. 9) It is found that it must be constructed irrigation and drainage system, inlet and outlet perpect, respectly, of which could be irrigation water saved and would be inereased the irrigation water temperature.

  • PDF

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

CELL CULTURE STUDIES OF MAREK'S DISEASE ETIOLOGICAL AGENT (조직배양(組織培養)에 의한 Marek 병(病) 병원체(病原體)의 연구(硏究))

  • Kim, Uh-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.9 no.1
    • /
    • pp.23-62
    • /
    • 1969
  • Throughout the studies the following experimental results were obtained and are summarized: 1. Multiplication of agents in primary cell cultures of both GF classical and CR-64 acute strain of Marek's disease infected chicken kidneys was accompanied by the formation of distinct transformed cell foci. This characteristic nature of cell transformation was passaged regularly by addition of dispersed cell from infected cultures to normal chicken kidney cell cultures, and also transferred was the nature of cell transformation to normal chick-embryo liver and neuroglial cell cultures. No cytopathic changes were noticed in inoculated chick-embryo fibroblast cultures. 2. The same cytopathic effects were noticed in normal kidney cell monolayers after the inoculation of whole blood and huffy coat cells derived from both forms of Marek's disease infected chickens. In these cases, however, the number of transformed cell foci appearing was far less than that of uninoculated monolayers prepared directly from the kidneys of Marek's disease infected chickens. 3. The change in cell culture IS regarded as a specific cell transformation focus induced by an oncogenic virus rather than it plaque in slowly progressing cytopathic effect by non-oncogenic viruses, and it is quite similar to RSV focus in chick-embryo fibroblasts in many respects. 4. The infective agent (cell transformable) were extremely cell-associated and could not be separated in an infective state from cells under the experimental conditions. 5. The focus assay of these agents was valid as shown by the high degree of linear correlation (r=0.97 and 0.99) between the relative infected cell concentration (in inoculum) and the transformed cell foci counted. 6. No differences were observed between the GF classical strain and the CR-64 acute strain of Marek's disease as far as cell culture behavior. 7. Characterization of the isolates by physical and chemical treatments, development of internuclear inclusions in Infected cells, and nucleic acid typing by differential stainings and cytochemical treatments indicated that the natures of these cell transformation agents closely resemble to those described fer the group B herpes viruses. 8. Susceptible chicks inoculated with infected kidney tissue culture cells developed specific lesions of Marek's disease, and in a case of prolonged observation after inoculation (5 weeks) the birds developed clinical symptoms and gross lesions of Marek's disease. Kidney cell cultures prepared from those inoculated birds and sacrificed showed a superior recovery of cell transformation property by formation of distinct foci. 9. Electron microscopic study of infected kidney culture cells (GF agent) by negative staining technique revealed virus particles furnishing the properties of herpes viruses. The particle was measured about $100m{\mu}$ and, so far, no herpes virus envelop has been seen from these preparations. 10. No relationship of both isolates to avian leukosis/sarcoma group viruses and PPLO was observed.

  • PDF

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on the Growth. Yield of Rice Plants and Its Optimum Facilities. (수환관개방법과 적정시설연구 (수환관개의 방법의 차이가 수축생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구))

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1534-1548
    • /
    • 1969
  • This experiment was conducted, making use of the 'NONG-RIM6' arecommended variety of rice for the year of 1968. Main purposes of the experiment are to explore possibilities of; a) ways and means of saving irringation water and, b) overcoming drought at the same time so that an increased yield in rice could be resulted in. Specifically, it was tried to determine the effects of the Rotation irrigation method combined with differentiated thickness of lining upon the growth and yield of rice. Some of the major findings are summarized in the following. 1) The different thicknesses show a significant relationship with the weight of 1,000 grains. In the case of 9cm lined plot, the grain weight is 23.5grams, the heaviest. Next in order is 3cm lined plot, 6cm lined plot, control plot, and wheat straw lined-plot. 2) In rice yield, it is found that there is a considerably moderate significant relationship with both the different thickness of lining and the number of irrigation, as shown in the table. 3) There is little or no difference among different plots in terms of a) physical and chemical properties of soil, b) quality of irrigation water, c) climatic conditions, and rainfalls. 4) It is found that there is a significant relationship between differences in the method of rotation irrigation and the number of ears per hill. The plot irrigated at an interval of 7 days shows 17.4 ears and plot irrigated at an interval of 6 days, 16.3 5) In vinyl-treated plots, it is shown that both yield and component elements are greatest in the case of the plot ith whole of $3cm/m^2$ Next in order are the plot with a hole of $2cm/m^2$ the plot with a hole of $1cm/m^2$ In the case of the plot with no hole it is found that both yield and component elements are decreased as compared to the control plot. 6) The irrigation water reqirement is measured for the actual irrigation days of 72 which are the number subtracted the days of rainfall of 30 from the total irrigation days of 102. It is found that the irrigation water requirement for the uncontrol plot is 1,590mm as compared to 876mm(44.9% saved) for the 9cm-lined plot, 959mm(39.7% saved) for the 6cm-lined plot 1,010mm(36% saved) for the 3cm-lined plot and 1,082mm(32% saved) for the wheat straw lined plot. In the case of the Rotation irrigation method it is found that the water requirement for the plot irrigated at an interval of 8 days is 538mm(65% saved), as compared to 617mm(61.6% saved) for plot irrigated at an interval of 7 day 672mm(57.7% saved) for plot irrigated at an interval of 6day, 746mm(53.0% saved) for the plot irrigated at an interval of 5 days, 890mm 44.0% saved) for the plot irrigated at an interval of 4 days, and 975mm(38.6% saved) for the plot irrigated at an interval of 3 days. 7) The rate of evapotranspiration is found 2.8 around the end of month of July, as compared to 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of September. 8) It is found that the saturation quantity of 30mm per day is decreased to 20mm per day though the use of vinyl covering. 9) The husking rate shows 75 per cent which is considered better.

  • PDF