• 제목/요약/키워드: Physical absorption

검색결과 953건 처리시간 0.027초

증기증착 공정 감시를 위한 반도체 레이저 흡수 분광학 (Semiconductor laser-based absorption spectroscopy for monitoring physical vapor deposition process)

  • 정의창;송규석;차형기
    • 한국진공학회지
    • /
    • 제13권2호
    • /
    • pp.59-64
    • /
    • 2004
  • 반도체 레이저를 광원으로 사용하는 원자흡수분광 방법으로 금속증기의 증착 공정을 감시하는 연구를 수행하였다. 전자빔 가열 방식을 이용하여 gadolinium (Gd) 금속을 대량으로 증발시켰다. 파장 영역이 770-794 nm (중심파장 780 nm)인 반도체 레이저빔과 388-396 nm 영역의 제 2 고조파 빔을 진공용기에 입사시켜 증발되는 금속증기의 원자흡수 스펙트럼을 실시간으로 기록하였다. 흡수 스펙트럼을 분석하여 증기의 원자밀도를 구했다. 전자빔 출력을 변화시키면서 측정한 원자밀도를 수정 결정 모니터 장치를 사용하여 측정한 증착률과 비교하였다. 산업적으로 많이 사용되는 Ti 등의 증착 공정 감시에 이 실험에서 구현한 레이저 분광장치를 적용할 수 있다는 것을 제시하였다.

연소전 조건에서 물리흡수제를 이용한 이산화탄소 흡수특성 (Carbon Dioxide Absorption Property of Physical Sorbent in the Pre-Combustion Condition)

  • 백근호;유승한;차왕석
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4643-4648
    • /
    • 2010
  • 본 논문에서는 주요 온실가스인 이산화탄소를 고압 환원 분위기인 연소전 조건에서 회수하기 위해 물리흡수제인 DMSO, Sulfone, PEG를 이용하여 이산화탄소 흡수특성을 조사하였다. 회분식 기-액 평형반응기를 이용하여 흡수반응온도 및 압력에 따른 이산화탄소 용해도와 물리흡수제의 재생성, 그리고 초기흡수특성을 연구하였다. 실험결과 PEG가 이산화탄소 용해도 및 초기 흡수능력이 가장 우수하였다. 그리고 PEG를 비롯한 물리흡수제가 다양한 흡수반응온도 및 압력에서 우수하게 재생됨을 확인할 수 있었다.

낙상 보호 팬츠개발을 위한 충격흡수 소재특성 평가 (Characteristic Evaluation of Impact Absorption Materials for the Development of Fall Impact Protective Pants)

  • 박정현;이진숙;이정란
    • 한국의류학회지
    • /
    • 제40권3호
    • /
    • pp.495-505
    • /
    • 2016
  • This study explores and selects an appropriate material that considers light and soft physical properties as well as activity for impact absorption pads that can be used to develop practical impact protective clothes worn during daily life by the elderly to reduce the impact of falls. Physical properties, impact absorption performance, and compression characteristics were evaluated on 5 types of foam, 2 types of 3D spacer fabric, and 3 types of polymer gel to select a material appropriate for the pad to be inserted into impact protective clothes. The evaluation of the physical properties showed that 3D spacer fabrics had lower density compared to other materials and polymer gels had the highest density. The elongation percentage was higher in foams than 3D spacer fabrics and EPDM foam had the highest elongation percentage. The impact absorption performance of honeycomb polymer gel was better than foams and 3D spacer fabrics. As a result of looking into compression energy and compression characteristics of materials, 'CR foam A' was found to absorb the largest amount of compression energy, 24.1%, among foams and polymer gels. A high energy absorption rate of 50.0% (or above) was indicated by 3D spacer fabrics; however, foams and polymer gels showed a progressive deformation of energy compression / recovery curve with 3D spacer fabrics that showed drastic deformation. Based on characteristics of materials, 'CR foam C' and EPDM with relatively high absorption performance can be used as protective pad materials among foams. Among polymer gels, 2 open-type polymer gels that have relatively low impact protective performance but a relatively lighter weight on human body (compared to closed-type) are considered appropriate protective pad materials.

한반도 산림골재의 물성특성 (Physuical characteristics of crushed aggregates in Korea)

  • 양동윤
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 1999
  • In the last decade, the supply of natural aggregates has been continuously increased due to the other types of aggregates. In general, aggregates constitute 70-80% of the total volume of concrete, so the quality of aggregates is main factor controlling physical characteristics of concrete. For this reason, physical properties of aggregate according to different rock types were studied. The majority of crushed aggregates is taken out of granite, gneiss, sandstone, andesite, basalt and so forth. The physical properties of these rock types were tested and most of them fell within the acceptable limit on the base of Korean standard regulation. The major lithology of the crushed aggregates is granite and gneiss, both of which are marked for more than 50% of total lithology thpes in Korea. A to the physical properties of granite, the high specific gravity coincides with low porosity, low absorption ratio, while the abrasion and soundness index show, in general, no specific trend. It has been assumed that slight differences of the physical properties of granite aggregates are related with those of the mineral composition, grain size, and so on. In comparison to granite, the physical properties of gneiss have little correlation one after another. This trend is related to different mineral composition, grain size and typical sheet fractures typically prevailing in the texture of gneiss. Spatial pattern of physical properties shows that high specific gravity of granite coincides only with low porosity and absorption ratio in all provinces except Cheolla province, and high specific gravity of gneiss coincides with low porosity and absorption ratio only in Cheolla and Gandwon provinces.

  • PDF

초음파 투과성 매질들의 여러 특성에 관한 연구 (The study was to analyze the effect of various ultrasound transmission media)

  • 강군용;김영배
    • 대한물리치료과학회지
    • /
    • 제9권4호
    • /
    • pp.185-192
    • /
    • 2002
  • Ultrasound has been found useful as a therapeutic modality for the reduction of muscular and tendinous spasm. It has also been utilized for pain and other pathologic conditions through the ability of soundwaves to introduce molecules of chemical substances through the skin by a process. Choice of the transmission medium is very important for effective ultrasound treatment in clinical field. The purpose of this study was to analyze the effects of various ultrasound conduction media in regard to ultrasound conductivity and degree of absorption, evaporation and of skin irritation. The media used in this study were Antiphlamine, Sacch lotion, Stereogel, Trastgel, Antiphlamine S lotion, and Mentholatum lotion that have been used in clinical medicine. The study revealed that Antiphlamine was not compatible with a good ultrasound transmitter. Other media excluding Antiphlamine were compatible with a good ultrasound conductor, but they had some drawback with their nature of higher absorption, evaporation and skin irritation. The medium that was prepared by mixing of Antiphlamine with Gel in 1 to 10 ratio was a good ultrasound transmitter and extents of absorption and evaporation and of skin irritation of it were less than the other media.

  • PDF

Water Absorption and Dimensional Stability of Heat-treated Fast-growing Hardwoods

  • PRIADI, Trisna;SHOLIHAH, Maratus;KARLINASARI, Lina
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2019
  • A common problem with fast-growing hardwoods is dimensional instability that limits use of their wood. In this study, we investigated the effects of pre-drying methods, temperatures, and heating duration on the specific gravity, water absorption, and dimensional stability of three tropical fast-growing hardwoods, jabon (Neolamarckia cadamba Roxb.), sengon (Falcataria moluccana Miq.), and mangium (Acacia mangium Willd.). Wood samples were pre-dried by two methods (fan and oven at $40^{\circ}C$), and heat treatments were performed at three temperatures (120, 150, and $180^{\circ}C$) for two different time periods (2 and 6 hours). The specific gravity, water absorption, dimensional stability, and structural changes of the samples were evaluated. The results revealed that heat treatments slightly reduced the specific gravity of all three wood species. In addition, the heat treatments reduced water absorption and significantly improved dimensional stability of the samples. Oven pre-drying followed by heat treatment at $180^{\circ}C$ for 6 hours resulted in good physical improvement of jabon and sengon wood. Fan pre-drying followed by heat treatment at $180^{\circ}C$ for 2 hours improved the physical properties of mangium wood. The heat treatment shows a promising technique for improving the physical characteristic of fast growing hardwoods.

NEAR-INFRARED SPECTROSCOPY OF CO RO-VIBRATIONAL ABSORPTION TOWARD HEAVILY OBSCURED AGNs

  • Shirahata, Mai;Nakagawa, Takao;Oyabu, Shinki;Usuda, Tomonori
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.169-173
    • /
    • 2017
  • We provide a new physical insight on the hot molecular clouds near the nucleus of the obscured AGNs. We performed near-infrared spectroscopic observations of heavily obscured AGNs in order to reveal physical characteristics of molecular clouds, especially focused on the CO fundamental ro-vibrational absorption around $4.7{\mu}m$. We have made systematic moderate-resolution spectroscopic observations toward 30 representative (U)LIRGs using the AKARI/IRC, and some of the ULIRGs showed the strong CO absorption feature. For three bright (U)LIRGs that show a steep red continuum with the deep CO absorption feature, IRAS 08572+3915, UGC 05101, and IRAS 01250+2832, we have also made high-resolution spectroscopic observations using the Subaru/IRCS. We have successfully detected many absorption lines up to highly excited rotational levels, and these lines are very deep and extremely broad. The derived physical conditions of molecular clouds are extreme; the gas temperature is as high as several 100 to a 1000 K, the $H_2$ column density is larger than $10^{22}cm^{-2}$, and the gas density is greater than $10^7cm^{-3}$. Such hot and dense molecular clouds must exist around the central engine of the AGN.

Sound Absorption and Physical Properties of Carbonized Fiberboards with Three Different Densities

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.555-562
    • /
    • 2014
  • Characteristics of carbonized fiberboard such as chemical materials absorption, electromagnetic shielding, and electrical and mechanical performance were determined in previous studies. The carbonized board therefore confirmed that having excellent abilities of these characteristics. In this study, the effect of density on physical properties and sound absorption properties of carbonized fiberboards at $800^{\circ}C$ were investigated for the potential use of carbonized fiberboards as a replacement of conventional sound absorbing material. The thickness of fiberboards after carbonization was reduced 49.9%, 40.7%, and 43.3% in low density fiberboard (LDF), medium density fiberboard (MDF), and high density fiberboard (HDF), respectively. Based on SEM images, porosity of carbonized fiberboard increased by carbonization due to removing adhesives. Moreover, carbonization did not destroy structure of wood fiber based on SEM results. Carbonization process influenced contraction of fiberboard. The sound absorption coefficient of carbonized low density fiberboard (c-LDF) was higher than those of carbonized medium density fiberboard (c-MDF) and carbonized high density fiberboard (c-HDF). This result was similar with original fiberboards, which indicated sound absorbing ability was not significantly changed by carbonization compared to that of original fiberboards. Therefore, the sound absorbing coefficient may depend on source, texture, and density of fiberboard rather than carbonization.

일본산속성수 찬친모도키재의 물리적 성질과 흡음성능 평가 (Physical and Sound Absorption Properties Estimation of Cherospondias axillaris, Japanese Fast Growing Tree)

  • 강춘원;김광철;강욱;마츠무라 준지;타노우에 미사토
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권6호
    • /
    • pp.463-469
    • /
    • 2010
  • 속성수의 이용가능성을 파악하기 위하여 일본산 속성수 중의 하나인 찬친모도키(Choerospondias)의 물리적 성질, 역학적 성질 그리고 흡음특성을 조사하여 주거재료로서의 적용가능성을 검토하였다. 찬친모도키재는 평균 연륜폭이 약 8 mm 정도로 생장이 빨랐으며 기건비중은 약 0.55이었다. 찬친모도키재는 다른 건축자재에 비하여 흡음성능이 열등하지 않았고 비교적 우수한 강도적 성질을 나타내어 구조재나 마감재 등에의 이용이 가능할 것으로 사료되었다.

심지형 저면관수시스템의 심지의 물리적 성질에 따른 수분흡수 특성 (Water Absorption Characteristics of Substrate with Physical Properties of wick in Subirrigation System Using wick)

  • Dong Ho Jung;Jung Eek Son
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 2001년도 봄 학술발표논문집
    • /
    • pp.41-42
    • /
    • 2001
  • The objectives of this study were to investigate the effect of the physical properties of wick on the water absorption of substrate. Physical properties of wick in this study were cotton composition, width and length. The water Infiltration rate through the wick was 0.24 ㎝/s at 90 -95% cotton content, which was faster than at 80-85% (0.13 cm/s) and 70-75% (0.08 cm/s). As the cotton content increased, the water absorption of substrate became greater : the amount of absorbed water was about 5-7g higher at 90-95% than at 80-85% and 70-75% at a wick width of 1 ㎝, the velocity of water absorption through the wick was fastest with 0.25 ㎝ㆍs/sup -1/. The amount of absorbed water was higher at 3 ㎝ than at 1 and 2 ㎝. However, the water absorption rate through the cross - sectional area of wick (g H₂O /㎠/hr) was higher at a wick width of 2 ㎝ than at those of 1 and 3 ㎝. The amount of absorbed water in the substrate was higher at 2 : 1 than at 1 : 1 (length in substrate : length out of substrate). Absorbed water amount was larger at 30-40% initial moisture content than any other treatment.

  • PDF