• 제목/요약/키워드: Physical Vapor Deposition

검색결과 325건 처리시간 0.022초

금형강의 표면처리 및 성능평가에 관한 연구 (Study on the Surface Treatment and Performance Evaluation of Mold Steel)

  • 임규성;최성대
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.81-89
    • /
    • 2022
  • It is necessary to increase the surface hardness and improve the wear resistance and peeling resistance through the surface treatment and performance evaluation of the mold steel. As a result of vacuum heat treatment analysis, residual austenite measurement and surface treatment wear test, retained austenite should be removed by sub-zero treatment, and retained austenite was completely removed by treatment at -196℃. The TiMon film coated on the sub-zero treated STD11 specimen showed the lowest coefficient of friction.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • 제16권6호
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과 (Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD)

  • 김현철;이재신
    • 한국진공학회지
    • /
    • 제10권1호
    • /
    • pp.104-111
    • /
    • 2001
  • $SiH_4$, $CH_4$, $B_2H_6$ 혼합기체를 이용하여 플라즈마 화학증착법으로 비정질 탄화실리콘(a-SiC:H) 박막을 증착하였다. 기상 doping 농도를 0에서 $2.5\times10^{-2}$ 범위에서 변화시켜 얻은 박막의 물성을 SEM, XRD, Raman 분광법, FTIR, SIMS, 광흡수도와 전기전도도 분석을 통하여 살펴보았다. $B_2H_6$/($CH_4+SiH_4$) 기체유량비가 증가할수록 붕소의 도핑효율와 미세결정성은 감소하였다. 증착 중 $B_2H_6$ 기체가 첨가됨에 따라 비정질 탄화실리콘 박막의 Si-C-H 결합기의 강도는 감소하였으며, 이의 영향으로 박막내의 수소함량은 $B_2H_6/(SiH_4+CH_4$) 기체 유량비가 증가함에 따라 16.5%에서 7.5%로 단조감소하였다. $B_2H_6(CH_4+SiH_4$) 기체유량비가 증가할수록 a-SiC:H 박막의 광학적 밴드갭과 전기활성화 에너지는 감소하였고, 전기전도도는 증가하였다.

  • PDF

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun;Nasir, Tuqeer;Choi, Jae-Young
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.203-223
    • /
    • 2018
  • The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van;Ranot, Mahipal;Kang, Won Nam
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권3호
    • /
    • pp.7-9
    • /
    • 2014
  • Single-crystal like $MgB_2$ thin film was grown on (000l) $Al_2O_3$ substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) $MgB_2$ peak is $15^{\circ}$, which is very close to that has been reported for $MgB_2$ single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field ($H_{c2}$) and irreversibility field ($H_{irr}$) were determined from PPMS data, and the estimated values are comparable with that of $MgB_2$ single-crystals. The thin film shows a high critical temperature ($T_c$) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that $MgB_2$ thin film has a pure phase structure.

LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성 (Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD)

  • 정귀상;김강산
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

ICP-CVD 방법으로 합성된 탄소 나노튜브의 구조적 물성 및 전계방출 특성에 촉매의 전처리 공정이 미치는 영향 (Effects of catalyst pretreatment on structural and field emissive properties of carbon nanotubes synthesized by ICP-CVD method)

  • 홍성태;박창균;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1862-1864
    • /
    • 2005
  • Carbon nanotubes [CNTs] are grown on TiN-coated Si substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Pre-treatment of Ni catalysts has been performed using an RF magnetron sputtering system. Structural properties and field-emission characteristics of the CNTs grown are analyzed in terms of the RF power applied and the treatment time used in the pre-treatment process. The characterization using various techniques, such as FE-SEM, AFM, and Raman spectroscopy, show that the physical dimension as well as the crystal quality of CNTs are changed by pre-treatment of Ni catalysts. It is also seen that Ni catalysts with proper grain size and uniform surface roughness may produce much better electron emission. The physical reason for all the measured data obtained are discussed to establish the relationship between the structural property and the electron emission characteristic of CNTs.

  • PDF

In-Situ Pulse Laser Annealing 증착에 의한 광학박막의 표면 개선 효과 (Effect of Surface Improvement on Thin Film by In-Situ Laser Annealing Deposition)

  • 이세호;유연석
    • 한국광학회지
    • /
    • 제20권1호
    • /
    • pp.34-40
    • /
    • 2009
  • $MgF_2$, $SiO_2$ 및 ZnS 박막을 물리 증기 증착하는 동안 펄스 레이저(Nd-YAG, 제2고조파 532 nm)로 Annealing 하여 표면 거칠기 특성을 개선하였다. 펄스 반복율이 10 Hz, 펄스폭 5 ns, 파장 532 nm인 펄스레이저로 Annealing한 유리 기판에 증착된 $MgF_2$$SiO_2$ 시료들은 레이저 에너지가 $140\;mJ/cm^2$ 경우에 산란 총량 값이 최소가 되었지만, ZnS 박막의 경우에는 Annealing 레이저광 에너지가 $62\;mJ/cm^2$일 때 산란 총량이 최소값을 나타냈다. AFM을 사용하여 박막시료의 표면 거칠기에 대한 펄스 레이저 Annealing 효과를 측정 하였다. 그 결과는 TIS 측정치와 유사 하여 표면 거칠기는 Annealing 하기위해 조사된 레이저 에너지에 의존 하여 감소하였다.

마이크로 공진 구조체 제작을 위한 다층 폴리실리콘의 스트레스 특성 (Stress characteristics of multilayer polysilicon for the fabrication of micro resonators)

  • 최창억;이창승;장원익;홍윤식;이종현;손병기
    • 센서학회지
    • /
    • 제8권1호
    • /
    • pp.53-62
    • /
    • 1999
  • MEMS(Microelectromechanical System) 기술분야에서 폭넓게 사용하고 있는 폴리실리콘 박막을 이용하여 폴리실리콘 미소 공진 구조체를 제작하였다. 폴리실리콘 증착은 저압기상화학증착 장비를 사용하여 대칭적 두께로 박막을 적층하였고 폴리실리콘의 응력과 응력구배를 최소화시키기 위한 적층, 도핑 방법 및 열처리에 따른 특성을 분석하였다. 이를 위하여 브리지 빔과 캔티레바 테스트 패턴을 제작하여 기계적 응력 특성을 측정하였으며, 아울러 공정 조건별 개별 시료에 대한 물성을 XRD, SIMS등으로 분석하였다. 공진 구조체는 대칭적 증착 구조를 가지며, 최종적으로 $6.5{\mu}m$의 두께로 적층되었다. 제작된 평면형 공진 구조체의 진동특성은 직류 15V, 교류 0.05V의 구동전압, 1000mtorr 압력에서 공진 진폭이 $5{\mu}m$ Q값이 1270임을 보였으며, 개발된 마이크로 폴리실리콘 공진체는 마이크로 자이로 및 가속도 센서에 응용될 수 있다.

  • PDF