• Title/Summary/Keyword: Physical Simulator

Search Result 256, Processing Time 0.029 seconds

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

The effect of Horseback riding simulat or, Sling and Kendall Exercise on a cranio-vertebral angle and neck pain in Young Adults with Forward Head Posture (승마시뮬레이터, 슬링과 Kendall 운동이 머리전방자세를 가진 젊은 성인의 머리척추각과 목 통증에 미치는 영향)

  • Kim, Hyun-Sung;Park, jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.468-474
    • /
    • 2020
  • The aim of this study was to compare the effect of a horseback riding simulator, Slings and Kendall Exercise on a cranio-vertebral angle and the neck pain of the Forward Head Posture. This study included 30 young people with forward head posture. They were randomly divided into three groups. Each group performed the exercises for six weeks three times a week from September 2018 to November 2018. The variations of cranio-vertebral angle and neck pain were analyzed using paired t-tests and a one-way ANOVA test. The results of the study are as follows. Three groups showed significant variations of cranio-vertebral angle and neck pain (p < 0.05). But comparison of cranio-vertebral angle and neck pain between the groups showed no significant difference (p > 0.05). This study found that each exercise group for forward head posture was effective for inducing normal cervical alignment and neck pain relief. Therefore, various exercises can improve the forward head posture.

Characteristics of the Buttock Interface Pressure According to Wheelchair Propulsion Speed and Various Back Reclined Seating Position (휠체어 추진속도 및 등받이 경사각도에 따른 둔부 압력 변화 특성)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • Pressure ulcers are serious complications of tissue damage that can develop in patients with diminished pain sensation and diminished mobility. Pressure ulcers can result in irreversible tissue damage caused by ischemia resulting from external loading. There are many intrinsic and extrinsic contributors to the problem, including interface tissue pressure, shear, temperature, moisture, hygiene, nutrition, tissue tolerance, sensory and motor dysfunction, disease and infection, posture, and body support systems. The purposes of this study were to investigate the relationship between buttock interface pressure and seating position, wheelchair propulsion speed. Seated-interface pressure was measured using the Force Sensing Array pressure mapping system. Twenty subjects propelled wheelchair handrim on a motor-driven treadmill at different velocities (40, 60, 80 m/min) and seating position used recline ($100^{\circ}$, $110^{\circ}$, $120^{\circ}$) with a wheelchair simulator. Interface pressure consists of average (mean of the pressure sensor values) and maximum pressure (highest individual sensor value). The results of this study were as follows; No significant correlation in maximum/average pressure was found between a static position and a 40 m/min wheelchair propulsion (p>.05). However, a significant increase in maximum/average pressure were identified between conditions of a static position and 60 m/min, and 80 m/min wheelchair propulsion (p<.05). No significant correlation in maximum pressure were found between a $90^{\circ}$ recline (neutral position) and a $100^{\circ}$, $110^{\circ}$, or $120^{\circ}$ recline of the wheelchair back (p>.05). No significant difference in average pressure was found between conditions of a $90^{\circ}$ recline and both a $100^{\circ}$ and $110^{\circ}$ recline of wheelchair back. However, a significant reduction in average pressure was identified between conditions of a $90^{\circ}$ and $120^{\circ}$ recline of wheelchair back (p<.05). This study has shown some interesting results that reclining the seat by $120^{\circ}$ reduced average interface pressure, including the reduction or prevention in edema. And interface pressure was greater during dynamic wheelchair propulsion compared with static seating. Therefore, the optimal seating position and seating system ought to provide postural control and pressure relief. We need an education on optimal seating position and a suitable propulsion speeds for wheelchair users.

  • PDF

The study on performance of characteristics in engine oil by vehicle driving (차량 운행에 따른 엔진오일의 성능특성 평가 연구)

  • Lee, Joung-Min;Lim, Young-Kwan;Jung, Choong-Sub;Kim, Ye-Eun;Han, Kwan-Wook;Na, Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.237-244
    • /
    • 2013
  • The engine oil is used for lubrication of various internal combustion engines. Recently, the vehicle and engine oil manufacture usually guarantee for oil change over 15000~20000 km mileage, but the most of driver usually change engine oil every 5000 km driving in korea. It can cause to raise environmental contamination by used engine oil and increase the cost of driving by frequently oil change. In this study, we investigate the various physical properties such as flash point, pour point, kinematic viscosity, cold cranking simulator characteristics, total acid number, four-ball test and concentration of metal component for fresh engine oil and used engine oil after real vehicle driving (5000 km, 10000 km). The result showed that the total acid number, wear scar diameter by four-ball test, Fe and Cu had increased than fresh engine oil, but 2 kind of used oil (5000 km and 10000km) had similar physical values and concentration of metal component.

A study on the evaluation of metal component in automatic transmission fluid by vehicle driving (차량 운행에 따른 자동변속기유(ATF) 금속분 분석평가 연구)

  • Lee, Joung-Min;Lim, Young-Kwan;Doe, Jin-Woo;Jung, Choong-Sub;Han, Kwan-Wook;Na, Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • Automatic transmission fluid (ATF) is used for automatic transmissions in the vehicle as the characterized fluid. Recently, the vehicle manufacture usually guarantee for fluid change over 80000~100000 km mileage or no exchange, but most drivers usually change ATF below every 50000 km driving in Republic of Korea. It can cause to raise environmental contamination by used ATF and increase the cost of driving by frequently ATF change. In this study, we investigate the various physical properties such as flash point, fire point, pour point, kinematic viscosity, cold cranking simulator, total acid number, and metal component concentration for fresh and used ATF after driving (50000 km, 100000 km). The result showed that the total acid number, pour point, Fe, Al and Cu component had increased than fresh ATF, but 2 kind of used oil (50000 km and 100000km) had similar physical values and metal component concentration.

Distribute Intelligent Multi-Agent Technology for User Service in Ubiquitous Environment (유비쿼터스 환경의 사용자 서비스를 위한 분산 지능형 에이전트 기술)

  • Choi, Jung-Hwa;Choi, Yong-June;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.817-827
    • /
    • 2007
  • In the age of ubiquitous environment, huge number of devices and computing services are provided to users. Personalized service, which is modeled according to the character of each and every individual is of particular need. In order to provide various dynamic services according to user's movement, service unit and operating mode should be able to operate automatically with minimum user intervention. In this paper, we discuss the steps of offering approximate service based on user's request in ubiquitous environment. First, we present our simulator designed for modeling the physical resource and computing object in smart space - the infrastructure in ubiquitous. Second, intelligent agents, which we developed based on a FIPA specification compliant multi-agent framework will be discussed. These intelligent agents are developed for achieving the service goal through cooperation between distributed agents. Third, we propose an automated service discovery and composition method in heterogeneous environment using semantic message communication between agents, according to the movement by the user interacting with the service available in the smart space. Fourth, we provide personalized service through agent monitoring anytime, anywhere from user's profile information stored on handhold device. Therefore, our research provides high quality service more than general automated service operation.

Developing a Cellular Automata-based Pedestrian Model Incorporating Physical Characteristics of Pedestrians (보행자의 물리적 특성을 반영한 CA기반 보행모델)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.53-62
    • /
    • 2014
  • The floor field model is the micro pedestrian model based on a cellular automata for modeling pedestrian movement in the interior space using the static and dynamic floor field. It regards a form of pedestrian as square but the actual pedestrian's shape and size are similar to ellipsoid or rectangle. Because of this, we are difficult to give a rotation effect to pedestrians and there is a limit to reflect an impact of clogging and jamming. Also, this model is not able to reflect an impact of a posture and visibility effectively in the pedestrian movement. In this study, we suggest the improved pedestrian model incorporating the actual shape and size of pedestrian. The pedestrian's shape is defined not square but rectangle which is close to the actual body size of Korean. Also, we define the model which is able to represent the impact of clogging and jamming between pedestrians by adding the pedestrian's posture. We develop the simulator for testing the suggested model and study the difference between two models by comparing a number of effects. As a result, we could confirm solving the problem with dynamic value in the existed model and reflecting the panic effect in evacuation situation.

The Relationship between Subjective Driving Workload and Effects of PG Technology (주관적 운전부하 수준과 PG기법 적용효과의 관계)

  • O, Ju-Seok;Hwang, Bong-Gi;Lee, Sun-Cheol;Lee, Jong-Hak;Kim, Jong-Min;No, Gwan-Seop
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.37-45
    • /
    • 2011
  • The main objective of this study is two-fold: 1) to analyze the effect of PG technology application on road user's satisfaction and driving speed, and 2) to investigate the relationship between driver's subjective workload level and their reactions related to the PG technology application. Based on the result of field observation, the experimental scenario for driving simulation study was prepared. The experimental results showed that drivers were more satisfied to the road condition with PG technology applied, and even the pattern of speed reduction was more stable than control condition. The pattern of speed reduction along driver's subjective driving workload level were slightly different by physical road condition, and road user's satisfaction was revealed to be negatively correlated with their subjective driving workload level. This result indicates that depending on situation and driver characteristic, information for the drivers could be nothing more than nuisance that just distracts drivers. In order to facilitate the implementation of PG technology in Korea, further study on related human factors, especially for those who are weak in traffic situations, is recommended.

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF