• Title/Summary/Keyword: Phylogeny relationship

Search Result 115, Processing Time 0.018 seconds

The complete plastid genome and nuclear ribosomal transcription unit sequences of Spiraea prunifolia f. simpliciflora (Rosaceae)

  • Jeongjin CHOI;Wonhee KIM;Jee Young PARK;Jong-Soo KANG;Tae-Jin YANG
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • Spiraea prunifolia f. simpliciflora Nakai is a perennial shrub widely used for horticultural and medicinal purposes. We simultaneously obtained the complete plastid genome (plastome) and nuclear ribosomal gene transcription units, 45S nuclear ribosomal DNA (nrDNA) and 5S nrDNA of S. prunifolia f. simpliciflora, using Illumina short-read data. The plastome is 155,984 bp in length with a canonical quadripartite structure consisting of 84,417 bp of a large single-copy region, 18,887 bp of a short single-copy region, and 26,340 bp of two inverted repeat regions. Overall, a total of 113 genes (79 protein-coding genes, 30 tRNAs, and four rRNAs) were annotated in the plastome. The 45S nrDNA transcription unit is 5,848 bp in length: 1,809 bp, 161 bp, and 3,397 bp for 18S, 5.8S, and 26S, respectively, and 261 bp and 220 bp for internal transcribed spacer (ITS) 1 and ITS 2 regions, respectively. The 5S nrDNA unit is 512 bp, including 121 bp of 5S rRNA and 391 bp of intergenic spacer regions. Phylogenetic analyses showed that the genus Spiraea was monophyletic and sister to the clade of Sibiraea angustata, Petrophytum caespitosum and Kelseya uniflora. Within the genus Spiraea, the sections Calospira and Spiraea were monophyletic, but the sect. Glomerati was nested within the sect. Chamaedryon. In the sect. Glomerati, S. prunifolia f. simpliciflora formed a subclade with S. media, and the subclade was sister to S. thunbergii and S. mongolica. The close relationship between S. prunifolia f. simpliciflora and S. media was also supported by the nrDNA phylogeny, indicating that the plastome and nrDNA sequences assembled in this study belong to the genus Spiraea. The newly reported complete plastome and nrDNA transcription unit sequences of S. prunifolia f. simpliciflora provide useful information for further phylogenetic and evolutionary studies of the genus Spiraea, as well as the family Rosaceae.

Phylogenetic Analysis of the Genus Phellinus by Comparing the Sequences of Internal Transcribed Spacers and 5.8S Ribosomal DNA (Ribosomal DNA의 Internal Transcribed Spacer(ITS) 부위의 염기서열분석에 의한 Phellinus속의 계통분석에 관한 연구)

  • Chung, Ji-Won;Kim, Gi-Young;Ha, Myung-Gui;Lee, Tae-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.124-131
    • /
    • 1999
  • This study was carried out to identify the phylogenetic relationship among Phellinus species by comparing the DNA sequences of the 5.8S ribosomal DNA (rDNA) and the internal transcribed spacers (ITSs), ITS1 and ITS2 regions. Two primers from the 3' end of 18S rDNA and the 5' end of 28S rDNA sequences were chosen to amplify the specific ITS regions of Phellinus spp. Phellinus strains used in the study were divided into four clusters by the phylogenetic tree based on the amplified regions of ITS and 5.8S rDNA sequences. The first cluster consist of Phellinus hartigii IMSNU 32041 and Phellinus robustus IMSNU 32068, and the second cluster consists of Phellinus linteus strains and Phellinus weirianus IMSNU 32021. Phellinus laevigatus KCTC 6229, KCTC 6230 and Phellinus igniarius KCTC 6227, KCTC 6228 belong to the third cluster. Finally, Phellinus chrysoloma KCTC 6225 and Phellinus chrysoloma KCTC 6226 are the fourth cluster. In the second cluster the differentiation between Phellinus linteus strains and Phellinus weirianus species were not possible by the comparison of the ITS sequences. These results revealed that Phellinus linteus and Phellinus weirianus cannot be established the concept of species level only by the ITS sequences. Therefore, both physiological and molecular biological methods as well as the sequences of type strains are necessary to classify the strains of these two species accurately. The comparison of the ITS sequences of four Phellinus species indicated that the sequences of the ITS1 generally are more divergent than those of the ITS2. Although the ITS sequences are varied in some species, the conserved regions in both ITS1 and ITS2 are useful tool to differentiate the species. Phellinus linteus and related species have their specific sequences in the ITS1 compared to the other species.

  • PDF

Molecular phylogeny and the biogeographic origin of East Asian Isoëtes (Isoëtaceae) (동아시아 물부추속 식물의 분자계통 및 식물지리학적 기원에 대한 고찰)

  • CHOI, Hong-Keun;JUNG, Jongduk;NA, Hye-Ryun;KIM, Hojoon;KIM, Changkyun
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.4
    • /
    • pp.249-259
    • /
    • 2018
  • $Iso{\ddot{e}}tes$ L. ($Iso{\ddot{e}}taceae$) is a cosmopolitan genus of heterosporous lycopods containing ca. 200 species being found in lakes, streams, and wetlands of terrestrial habitats. Despite its ancient origin, worldwide distribution, and adaptation to diverse environment, species in $Iso{\ddot{e}}tes$ show remarkable morphological simplicity and convergence. Allopolyploidy appears to be a significant speciation process in the genus. These characteristics have made it difficult to assess the phylogenetic relationships and biogeographic history of $Iso{\ddot{e}}tes$ species. In recent years, these difficulties have somewhat been reduced by employing multiple molecular markers. Here, we reconstruct the phylogenetic relationships in East Asian $Iso{\ddot{e}}tes$ species. We also provide their divergence time and biogeographic origin using a fossil calibrated chronogram. East Asian $Iso{\ddot{e}}tes$ species are divided into two clades: I. asiatica and the remaining species. $Iso{\ddot{e}}tes$ asiatica from Hokkaido forms a clade with northeastern Russian and western North American $Iso{\ddot{e}}tes$ species. In clade I, western North America is the source area for the dispersal of $Iso{\ddot{e}}tes$ to Hokkaido and northeastern Russia via the Bering land bridge during the late Miocene. The remaining $Iso{\ddot{e}}tes$ species (I. sinensis, I. yunguiensis, I. hypsophila, I. orientalis, I. japonica, I. coreana, I. taiwanensis, I. jejuensis, I. hallasanensis) from East Asia form a sister group to Papua New Guinean and Australian species. The biogeographic reconstruction suggests an Australian origin for the East Asian species that arose through long-distance dispersal during the late Oligocene.

Comparative Analysis of Mitochondrial Genomes of the Genus Sebastes (Scorpaeniformes, Sebastidae) Inhabiting the Middle East Sea, Korea (한국 동해 중부해역에 서식하는 볼락속(Sebastes) 어류의 미토콘드리아 유전체 비교분석)

  • Jang, Yo-Soon;Hwang, Sun Wan;Lee, Eun Kyung;Kim, Sung
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.226-239
    • /
    • 2021
  • Sebastes minor, Sebastes trivittatus, Sebastes owstoni, and Sebastes steindachneri are indigenous fish species inhabiting the central part of the East Sea, Korea. In order to understand the molecular evolution of these four rockfishes, we sequenced the complete mitochondrial genomes (mitogenomes) of S. minor and S. trivittatus. To further analyze the phylogeny of Sebastes species, the mitogenomes of 16 rockfishes were comparatively investigated. The complete mitochondrial DNA (mtDNA) nucleotide sequences of S. minor and S. trivittatus were 16,408 bp and 16,409 bp in length, respectively. A total of 37 genes were found in mtDNA of S. minor and S. trivittatus, including 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which exhibited similar characters with other Sebastes species in the East Sea, Korea. In addition, we detected a conserved motif "ATGTA" in the control region of the four Sebastes species, but no tandem repeat units. Comparative analyses of the congeneric mitochondrial genomes were performed, which showed that control regions were more variable than the concatenated protein-coding genes. As a result of analysing phylogenetic relationships of four Sebastes species by using concatenated nucleotide sequences of 13 protein-coding genes, S. minor, S. trivittatus, S. owstoni and S. steindachneri were clustered into three clades. The phylogenetic tree exhibited that S. minor and S. steindachneri shared a closer relationship, whereas S. trivittatus and S. vulpes formed another distinct clade. Our results contribute to a better understanding of evolutionary patterns of Sebastes species inhabiting the middle East Sea, Korea.