• Title/Summary/Keyword: Photovoltaic system (PV)

Search Result 970, Processing Time 0.028 seconds

A Novel Simulation Scheme for Grid Connected Photovoltaic Generation Systems

  • Park, Monwon;Kim, Bong-Tae;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.169-174
    • /
    • 2001
  • A novel simulation scheme of transient phenomenon for the photovoltaic (PV) generation system under the real weather conditions has been proposed in this paper. A grid connected PV array is simulated using PSCAD/EMTDC. The transient changes of the output current of PV array under the real weather conditions is described and the output current of DC/AC converter flowing through the utility power network is also analyzed with the PWM switching width. Moreover, the MPPT control of PV generation system is combined to the system during the simulation for the comparison purposes of the control schemes. The outcome of the simulation demonstrates the effectiveness of the proposed simulation scheme. The result shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real whether conditions are eventually possible.

  • PDF

PV System Output Analysis Based on Weather Conditions, Azimuth, and Tilt Angle (기상조건, 방위각 및 경사각에 따른 태양광발전시스템 출력 분석)

  • Lee, Sang Hyuk;Kwon, Oh Hyun;Lee, Kyung Soo
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • PV system output is determined according to the weather conditions, the azimuth and tilt angle. Weather conditions are changing every moment and it seems to vary according to the daily, monthly, and annual basis. The azimuth and tilt angle is decided along the site conditions for the PV system installation. This paper analyzed the PV system output through the changing the weather conditions, the azimuth, and tilt angle. We compared the TMY data and analysis of the two major weather institutes which are KMA and METEONORM. PV system output trend were analyzed by changing the azimuth and tilt angle. We used simulation tool, which is named PVsyst for the entire PV system analysis.

A Study on the Installation Potential of Photovoltaic System Based on Regional Architectural Data (지역별 건축물 데이터를 활용한 태양광발전시스템 설치 잠재량 산정에 관한 연구)

  • Shin, Min-Su;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.29-45
    • /
    • 2019
  • As the solar energy market grows, the need to investigate the potential of photovoltaic system is being highlighted. However, due to the lack of plain field, the system on top of buildings is being exploited. This paper analyzes the potential to install PV systems on the rooftops. First of all, with the aid of a photovoltaic system simulation software, buildings were designed in a specific area based on the architectural data. And then, with the same software, the potential to install photovoltaic system was explored by placing PV modules on the buildings' rooftops. The installation potential was calculated and simulated with consideration for obstacles on the rooftops. The parameters are composed of available area for system installation, area utilization rate, PV system power capacity, operation yield hour per day and performance ratio. In the simulation, 5 sites were analyzed based on their architectural data. In the end, reliable data that can be utilized were collected for the potential to install the system with the photovoltaic system simulation software.

A dP/dV Feedback-Controlled MPPT Method for Photovoltaic Power System Using II-SEPIC

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.604-611
    • /
    • 2009
  • A dP/dV feedback-controlled MPPT (Maximum Power Point Tracking) method for photovoltaic power systems using II-SEPIC (Isolated Inverse-SEPIC; Single Ended Primary Inductance Converter) is presented and a current-mode dP/dV feedback-controlled MPPT method is devised to apply for the PV power converter system. A control strategy for the current-mode dP/dV feedback control system is developed in this paper and the proposed MPPT shows relatively satisfactory dynamics against rapidly changing insolation conditions. In order to verify the validity and effectiveness of the proposed method, simulations and experiments of the PV power system using II-SEPlC converter are performed. These simulation and experiment results show that the proposed method enables the PV power system to extract maximum power from the photovoltaic module against the solar insolation variation.

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.

Analysis of Switching Surge in Distribution System with Photovoltaic Generation System (태양광 발전 연계 계통에서 개폐서지 해석)

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.698-699
    • /
    • 2011
  • This paper analyzes the switching surge in distribution system with photovoltaic (PV) generation system. The change of overvoltage by PV generation system is analyzed using lattice diagram. To verify the analysis results, the distribution system with PV generation system is modeled using EMTP-RV and the various simulations are performed.

  • PDF

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.

Performance Analysis of Anti-islanding Function for Grid-connected PV Inverter Systems under Parallel Connections (병렬운전하는 계통연계형 태양광 발전용 인버터의 단독운전 검출 성능 분석)

  • Jung, Young-Seok;Yu, Byung-Gyu;Kang, Gi-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.34-40
    • /
    • 2013
  • Islanding phenomenon of photovoltaic system is undesirable because it leads to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized re-closure. Anti-islanding protection is an important technical requirement for grid-connected PV system. Until now, various anti-islanding methods for detecting and preventing islanding of photovoltaic and other distributed generations have been proposed. Most of them are focusing on the anti-islanding performance of single PV system according to the related international and domestic standard test procedures. There are few studies on the islanding phenomenon for multiple photovoltaic operation in parallel. This paper presents performance analysis of anti-islanding function for grid-connected PV inverter systems when several PV inverters are connected in parallel.

MPPT Strategy to Improve Photovoltaic Power Generation Efficiency in Partial Shadows (부분 음영에서의 태양광 발전 효율을 높이기 위한 MPPT 전략)

  • Heo, Cheol-Young;Kim, Yong-Rae;Lee, Young-Kwoun;Lee, Dong-Yun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In order to increase the power generation efficiency of the photovoltaic system, a new algorithm that can follow the maximum power point of the photovoltaic power generation system having nonlinear output characteristics is proposed. Conventional maximum power point tracking (MPPT) algorithms such as Perturbation and Observation (P&O) and InCond (Increment and Conductance) schemes can not find the global maximum power point at a plurality of pole points in the unmatched state of unbalanced PV modules. However, even if the global maximum power point is found at a plurality of pole points, the global maximum power that can not be the real maximum power by the photovoltaic generation system. In order to solve this problem, a few PV companies propose installing several small PV inverters instead of if big one. However, since this will require additional costs, we herein propose a Multi-MPPT system using individual 3-point MPPT to track true MPPT at a plurality of pole points in the unmatched state of unbalanced PV modules.