• Title/Summary/Keyword: Photovoltaic properties

Search Result 437, Processing Time 0.032 seconds

Characteristic Evaluation Tools of EVA Sheet for Photovoltaic Module Fabrication (태양전지모듈용 EVA Sheet의 특성 평가 방법)

  • Kang, Kyung-Chan;Lee, Jin-Seob;Kang, Gi-Hwan;Huh, Chang-Su;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.92-97
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. The properties of Ethylene Vinyl Acetate(EVA) sheet in photovoltaic encapsulant materials have to meet conditions that are high optical transmittance, good adhesion and high cross-linking rate. The objective of this paper is to understand the property evaluation methods of EVA sheet. Through this research, we could confirm that properties of EVA sheet have an effect on durability and operating efficiency of photovoltaic module.

  • PDF

The Structure and Electrical Properties of Si-ZnO n-n Heterojunctions (Si-ZnO n-n 이종접합의 구조 및 전기적 특성)

  • 이춘호;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 1986
  • Si-ZnO n-n heterojunction diodes were prespared by r.f diode sputtering of the sintered ZnO target on n-type Si single crystal wafers and their structures and electrical properties were studied. The films were grown orientedly with the c-axis of crystallites perpendicular to the substrate surface at low r.f. powder and grown to polycrystalline films with random orientation at high r. f. powder. The crystallite size increased with the increasing substrate temperture The oriented texture films only were used to prepare the photovoltaic diodes and these didoes showed the photovoltaic effect veing positive of the ZnO side for the photons in the wavelength range of 380-1450nm. The sign reversal of phootovoltage which is the property os isotype heterojunction was not observed because of the degeneration of the ZnO films. The diode showed the forward rectification when it was biased with the ZnO side positive. The current-voltage characteristics exhibited the thermal-current type relationship J∝exp(qV/nkT) with n=1.23 at the low forward bias voltage and the tunnelling-current type relationship J∝exp($\alpha$V) where $\alpha$ was constant independent of temperature at the high forward bias voltage. The crystallite size of ZnO films were influenced largely on the photovoltaic properties of diodes ; The diodes with the films of the larger crystallites showed the poor photovoltaic properties. This reason may be cosidered that the ZnO films with the large crystallites could not grow to the electrically continuous films because the thickness of films was so thin in this experiment.

  • PDF

Development of the Floating Type Photovoltaic Energy Generation System (부유식 태양광 에너지 발전시설의 개발)

  • Choi, Hoon;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.16-26
    • /
    • 2010
  • In this paper, we present the result of investigations pertaining to the development of the floating type photovoltaic energy generation system. Pultruded FRP has superior mechanical and physical properties compared with those of conventional structural materials. Since the FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of the floating type photovoltaic energy generation system. In the paper, we discussed the development concepts of the floating type photovoltaic energy generation system, briefly. The mechanical properties of the FRP structural member used in the development are investigated through the tensile and compression tests. Test results are used in the finite element analysis and the design of the system. In addition, bolted connections of the members are briefly discussed and the strengths of FRP bolted connections are estimated based on the results of experiments. The experimental results are compared with the finite element analysis results and discussed briefly. The floating type photovoltaic energy generation system is designed, fabricated, and installed successfully in site.

  • PDF

Fast and Low Temperature Deposition of Polycrystalline Silicon Films by Hot Wire CVD (Hot Wire CVD를 이용한 다결정 Si 박막의 고속 저온 증착)

  • Lee, Jeong-Chul;Kang, Ki-Whan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1427-1429
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-Wire CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the wire temperature($T_w$). The films deposited at high $T_w$ of 2000$^{\circ}C$ have superior crystalline properties; average lateral grain sizes are larger than $1{\mu}m$ and there at·e no vertical grain boundaries. The surface of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and textured surface are believed to give high current density when applied to solar cells. However, the poly-si films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Electrical and Optical Characterizations of Metal/Semiconductor Contacts for Photovoltaic Applications

  • Kim, Dong-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.11.2-11.2
    • /
    • 2010
  • Photovoltaic devices are promising candidates as affordable and large-area renewable energy sources, which can replace the fossil-fuel-based resources. Especially, thin film solar cells have attracted increasing research attention, since they have a great advantage of low production cost. From the physical point of view, the photovoltaic devices can provide us interesting questions, how to enhance the light absorption and the carrier collection efficiency. A lot of approaches would be possible to address these issues. We have focused on two major topics relevant to photovoltaic device physics; (1) light management using surface plasmons and (2) junction characterizations aiming at proper interface engineering. Regarding the first topic, we have investigated the influences of Ag under-layer morphology on optical properties of ZnO thin films. The experimental results suggested that coupling between the surface plasmon polaritons at the ZnO/Ag interface and excitons in ZnO should play important roles in reflectivity of the ZnO/Ag thin films, which are widely used back reflector structures in thin film solar cells. For the second topic, we have carried out scanning probe microscopy studies of Schottky junctions consisting of photovoltaic materials. Such a research is very helpful to understand the correlation between the defects (e.g., grain boundaries) and local electrical properties. We will introduce some of the recent experimental results and discuss the physical significance.

  • PDF

The Fabrication and Characterization of the Photovoltaic Cells Composed of Polydiacetylene and Fullerene

  • Song Jeong-Ho;Kang Tae-Jo;Cho Young-Don;Lee Sun-Hyoung;Kim Jeong-Soo
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.217-222
    • /
    • 2006
  • Propargyl alcohol was coupled to 2,4-hexadiyne-1,6-diol (HDD) and crystallized in the process of ultraviolet irradiation-induced topochemical polymerization. The HDD polymer crystals were used as one component in the fabrication of organic photovoltaic cells, in combination with fullerene as the electron acceptor. The various structures of the produced photovoltaic cells included bilayer, trilayer, and bulk heterojunction structures. Their photovoltaic properties were analyzed in relation to crystal structure, electrochemical properties, and band structure of the HOD polydiacetylene polymers.

Electrical Leakage Levels Estimated from Luminescence and Photovoltaic Properties under Photoexcitation for GaN-based Light-emitting Diodes

  • Kim, Jongseok;Kim, HyungTae;Kim, Seungtaek;Choi, Won-Jin;Jung, Hyundon
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.516-521
    • /
    • 2019
  • The electrical leakage levels of GaN-based light-emitting diodes (LEDs) containing leakage paths are estimated using photoluminescence (PL) and photovoltaic properties under photoexcitation conditions. The PL intensity and open-circuit voltage (VOC) decrease because of carrier leakages depending on photoexcitation conditions when compared with reference values for typical LED chips without leakage paths. Changes of photovoltage-photocurrent characteristics and PL intensity due to carrier leakage are employed to assess the leakage current levels of LEDs with leakage paths. The current corresponding to the reduced VOC of an LED with leakage from the photovoltaic curve of a reference LED without leakage is matched with the leakage current calculated using the PL intensity reduction ratio and short-circuit current of the LED with leakage. The current needed to increase the voltage for an LED with a leakage under photoexcitation from VOC of the LED up to VOC of a reference LED without a leakage is identical to the additional current needed for optical turn-on of the LED with a leakage. The leakage current level estimated using the PL and photovoltaic properties under photoexcitation is consistent with the leakage level measured from the voltage-current characteristic obtained under current injection conditions.

Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes (고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성)

  • Kim, Mi-Ra;Shin, Won-Suk;Jin, Sung-Ho;Lee, Jin-Kook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Properties of the carbon electrode perovskite solar cells with various annealing processes (열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화)

  • Song, Ohsung;Kim, Kwangbea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.