• 제목/요약/키워드: Photovoltaic modules

검색결과 362건 처리시간 0.021초

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 - (A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation -)

  • 전현우;윤혜경;박서준
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

경량화 태양광 모듈의 내구성 보완에 관한 연구 (A Study on the Durability Complement of Lightweight Photovoltaic Module)

  • 정태웅;박민준;김한준;송진호;문대한;홍근기;정채환
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • 통합자연과학논문집
    • /
    • 제15권3호
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.

새싹인삼 재배를 위한 투광 분산형 태양광 모듈 개발 및 자연채광 재배시스템 해외 실증연구 (Development of Light Distributed Solar Modules for Growing Sprout Ginseng and Overseas Empirical Research on Natural Lighting Cultivation System)

  • 강성환;최재호;정인성;임경열;박재우;응우옌 후 호앙;김종일
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.24-30
    • /
    • 2024
  • To create an environment for growing ginseng sprouts, we developed a solar module that partially transmits and disperses light. A G to G type light transmission and dispersion solar module was developed using glass with a mist pattern applied, and the light dispersion effect of the developed module was confirmed through illuminance measurement. The output of one module is approximately 260 W, and the configuration consists of 48 cells in series in 4 strings. The cultivation system where the developed module will be installed was developed in the form of a container, and three units of 2.6 kW (260 W x 10 EA). The inside of the cultivation system consists of a shading screen, air conditioner, ventilator, plastic pot, etc. to create an environment for cultivating sprout ginseng. As a result of actually planting sprout ginseng, it was confirmed through verification that the plants were grown without any problems.

브이용 전력시스템 설계 및 분석 (Design and Analysis of Power System for Buoy)

  • 조관준;유희한;국승기;오진석
    • 한국항해항만학회지
    • /
    • 제31권3호
    • /
    • pp.229-233
    • /
    • 2007
  • 본 논문은 브이용 PV 시스템 성능과 최대전력점추적기의 알고리즘에 대하여 기술하고자 한다 현재 운영되고 있는 브이는 대부분 태양광을 활용한 독립형 전력 시스템을 이용하고 있다. 이러한 태양광 전력 시스템은 직류 출력 특성을 가지고 있으며 직류 버스와 연결된다. 태양광 전지판의 I-V 출력 특성은 일사량, 전지판의 온도에 따라 변화하며 태양광 전지 마다 그 특성이 각기 다르게 나타나기 때문에 태양광 전지는 최대전력추적방식의 알고리즘에 의해 운영되어야 한다. 이에 본 논문은 태양광 전지의 특성, 최대전력추적방식, 태양광 전지판의 최적경사각을 논의하고자 한다.

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

독립형 태양광 발전 시스템의 무정전 전력공급을 위한 시스템 용량 최적 선정에 관한 연구 (A Study on the Optimal System Sizing of the Standalone Photovoltaic Power Generation System for Uninterruptible Power Supply)

  • 김기영;최우진
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.77-85
    • /
    • 2018
  • Renewable energy has been increasingly used and widely acclaimed as one of the solutions to rampant environmental problems. Among numerous kinds of renewable sources, the penetration rate of the PV system is relatively higher than that of others due to ease of installation. However, one disadvantage of the PV system is its dependence on weather condition. The PV system is especially critical when it is used for standalone systems because it cannot operate when the power generated from a PV module is not enough. Therefore, PV systems are often used with an energy storage system, such as batteries, to store backup energy when the weather condition is insufficient to supply power to the system. Blackout time can be reduced by increasing the size of the energy storage system, but it is a trade-off with system cost. In this work, optimal sizing of a standalone PV system is proposed to supply power to the system without blackout. The sizing of PV modules and batteries is performed by a simulation based on actual irradiation data collected during the past five years. The Life cycle costing of each system is evaluated to determine an optimal set of PV modules and batteries among several different combinations. The standalone PV system designed by the proposed method can supply power to the system with no interruption as long as the weather condition is similar to those of the past five years.

태양전지(太陽電池) 폐(廢) 모듈로부터 실리콘 및 강화(彈化)유리 회수(回收)에 관(關)한 연구(硏究) (Study for Recovery Silicon and Tempered Glass from Waste PV Modules)

  • 강석민;유성열;이진아;부봉현;유호진
    • 자원리싸이클링
    • /
    • 제20권2호
    • /
    • pp.45-53
    • /
    • 2011
  • 본 연구에서는 다양한 방법들을 이용하여 태양전지 폐 모듈로부터 태양전지의 주요 구성요소인 실리콘과 강화유리를 회수하는 연구를 수행하였다. 강화유리는 유기용매를 사용하여 회수하였고, EVA수지는 열처리를 통하여 완전히 제거하였다. 실리콘은 계면 활성제를 첨가한 혼산용액을 이용하여 표면물질을 제거하고 회수하였다. 90%이상의 높은 실리콘 회수율을 얻었다. 본 연구에 의하여 얻어진 강화유리와 실리콘은 태양전지 모듈의 원료로 재활용되어 실리콘 공급부족 문제해결, 태양전지 제조원가 및 폐기물 처리비용 절감에 기여할 것으로 기대된다.

정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구 (A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module)

  • 안태영;최현수
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.123-129
    • /
    • 2016
  • 본 논문에서는 PCU(Power Control Unit)의 성능을 최적화 시킬 수 있는 동작모드를 제안하고 제작하여 그 결과를 보고 하였다. 특히 세 개의 기능별 모듈이 최적의 동작 상태를 유지할 수 있도록 버스의 전압과 연동되게 제어회로를 구성하여 동작 우선순위를 정하고 필요에 따라 자동적으로 동작하도록 최적 동작 제어 방식을 제안하였다. PCU는 태양광 전력을 부하와 연결된 버스에 정전압으로 변환시키는 S3R(Sequential Switching Shunt Regulator)과 보조 에너지 저장장치인 배터리에 잉여 전력을 저장하는 BCR(Battery Charge Regulator) 및 배터리에 충전되어 있던 전력을 부하에 공급하는 BDR(Battery Discharge Regulator)로 구성되어 있다. 세 개의 전력변환 모듈은 위성용 전원장치의 특성상 높은 신뢰성을 유지하기 위해서 각각의 모듈이 병렬로 동작하며, 특히 각 모듈의 기능이 최적의 상태를 유지하기 위해서 안정된 버스 전압이 상시 유지되어야 한다.