• 제목/요약/키워드: Photovoltaic Generation

검색결과 970건 처리시간 0.026초

태양광 패널 최적기의 유선 및 무선 통신 시스템 설계에 관한 연구 (A Study on the Design of Wired and Wireless Communication System for Solar Panel Optimizer)

  • 양오
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.32-37
    • /
    • 2019
  • In this paper, we have designed a solar photovoltaic system to attach solar photovoltaic modules to each module and develop the best efficiency in each module. The efficiency of the designed solar panel optimizer was more than 99.27% and MPPT efficiency of 99.66%. In addition, the monitoring of power generation and abnormal operation phenomenon in each optimum period and tracking for failure location of specific photovoltaic module have improved the utilization rate of photovoltaic power generation. Wired and wireless communication methods has been proposed to monitor the power generation and operation status of the solar panel optimizer. For this purpose, the RS485 communication was used for wire communication and Zigbee communication was used for wireless communication to monitor the status of each module in real time. It is shown that communication redundancy can be achieved through the proposed method, and the possibility of commercialization is suggested.

출력을 고려한 모듈 간 최적화 간격 (Module liver optimization interval that consider generating power)

  • 최대원;최홍규;이근무;심용식;최영준;장민기;김태훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.53-58
    • /
    • 2009
  • Solar photovoltaic power generation system is judging that by the most suitable new refreshing energy in real condition of our country forward continuously interest for solar photovoltaic power generation system and diffusion me enlarged. Output decline problem is item to consider necessarily and should be verified in continuous interest for solar photovoltaic power generation system are diffusion. Present plan that minimize output decline calculating module liver optimum interval that consider recitation of a poem to reduce output decline by module liver shade by incidence angle consideration and this that occupy most parts among factor because do output of solar photovoltaic power generation system well.

  • PDF

독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구 (The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System)

  • 박세준;윤정필;강병복;윤형상;차인수;임중열
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

철도분야 태양광 발전 적용 확대를 위한 설계 단계에서의 태양광 발전량 예측 연구 (A Study on Photovoltaic Power Generation Amount Forecast at Design Stage for Extended Application in the Field of Railways)

  • 유복종;이주
    • 한국철도학회논문집
    • /
    • 제20권2호
    • /
    • pp.182-189
    • /
    • 2017
  • 본 논문의 연구 목적은 저탄소 에너지화에 큰 비중을 차지하고 있는 태양광 발전 시스템의 철도분야 적용확대를 위한 설계 단계에서의 태양광 발전량 예측 연구로 실제 운영하고 있는 지평 태양광발전소를 대상으로 태양광 발전량 상용 예측 프로그램인 PVsyst를 활용하여 프로그램 기본 제공 NASA와 Meteonorm의 해외 기상정보를 이용한 연간 태양광 발전량 예측값과 기상청(KMA) 기상정보를 이용한 발전량 예측값을 비교하고, 한국전력거래소(KPX) 실제 발전량과의 비교 분석을 통해 태양광발전소 구축비의 적정성을 확보하여 철도분야의 태양광 발전 시스템 확대적용과 나아가 신기후 체제에 대응한 저탄소 에너지화에 기여하고자 한다.

수상태양광 발전 시스템의 환경에 따른 모듈의 전기적 특성 (The Electrical Characteristics of The Modules According to The Environment of The Floating Photovoltaic System)

  • 황수현;이동영;권오극;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.283-289
    • /
    • 2018
  • In our study, we collected data from a 100 kW floating photovoltaic (PV) system installed in Gyeongnam Hapcheon Dam and observed correlations between the power generation of the floating PV system and the irradiance, water temperature, humidity, ambient temperature, wind speed, and module temperature. Firstly, there was little correlation between the water temperature and power generation. Secondly, the ambient temperature, wind speed, and humidity all showed greater correlations with power generation. Finally, the power generation was very highly correlated with the irradiance and module temperature. In conclusion, the power generation of the floating PV system is related individually to environmental factors.

태양광-풍력 하이브리드 발전기에서 태양전지모듈과 풍력발전기 이격거리 (Distance Between a Wind Turbine and a Photovoltaic Module in a Wind-Photovoltaic Hybrid Generation System)

  • 우상우;김홍우;김성수
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.58-64
    • /
    • 2009
  • This aim of the study is to demonstrate the effect of a photovoltaic module installed on a small wind-photovoltaic hybrid generation system. Computational fluid dynamics(CFD) is used to interpret the velocity field around the photovoltaic module and the blade areas of a wind turbine. According to the simulation results, it is obvious that x_velocity and y_velocity varies very significantly with time near the photovoltaic module. This would lead to an increase of periodic wind load caused by flow separation at the edge of the photovoltaic module. This study discusses the flow characteristics in term of velocity and frequency analysis. Moreover we suggest a distance between a photovoltaic module and a wind turbine to avoid partially the negative effect caused by the photovoltaic module.

Perez Model을 적용한 태양광 시스템 별 최적 설치 조건 및 최대 발전량 분석 (An Analysis of Optimal Installation Condition and Maximum Power Generation of Photovoltaic Systems Applying Perez Model)

  • 이재덕;김철환
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.683-689
    • /
    • 2012
  • Photovoltaic(PV) system is one of power generation systems. Solar light in PV system is like the fuel of the car. The quantity of electricity generation, therefore, is fully dependent on the available quantity of solar light on the system of each site. If a utility can predict the solar power generation on a planned site, it may be possible to set up an appropriate PV system there. It may be also possible to objectively evaluate the performances of existing solar systems. Based on the theories of astronomy and meteorology, in this paper, Perez model is simulated to estimate the available quantity of solar lights on the prevailed photovoltaic systems. Consequently the conditions for optimal power generation of each PV system can be analyzed. And the maximum quantity of power generation of each system can be also estimated by applying assumed efficiency of PV system. Perez model is simulated in this paper, and the result is compared with the data of the same model of Meteonorm. Simulated site is Daejeon, Korea with typical meteorological year(TMY) data of 1991~2010.

태양광 발전시스템의 월별 일사량과 전력량 분석 (Analysis of Irradiation and Power per Each Months of Photovoltaic Systems)

  • 신현만;최용성;황종선;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.40-42
    • /
    • 2009
  • The economic growth and highly industrialized society have increased the demand for electricity power. As a result, concerns were focused on the energy resource scarcity and global warming. That is why the photovoltaic generation system to address these concerns has been in the spotlight recently. In this thesis, a utility interactive photovoltaic generation system was operated experimentally for the purpose of promoting the spread of the photovoltaic generation system in the future. Also, the effect of the type of array structure has on the performance of the photovoltaic generation system was evaluated quantitatively and by analyzing the comprehensive operating characteristics, the following results were obtained. In the demo system operated for a year, the average irradiation was measured to be 455,076 $[W/m^2]$ and the maximum irradiation to be 626,622 $[W/m^2]$ in May, up 171,546 $[W/m^2]$ or 38[%] compared with the average irradiation. The minimum irradiation was observed to be 294,022$[W/m^2]$ in December, down 161,054 $[W/m^2]$ or 35[%] compared with the average irradiation. The generation power in situation where there is plenty of irradiation was more than the average one, and the generation power in the fixed system amounted to 32[%], the single-axis tracker to 37[%], and the dual-axis tracker to 39[%]. The generation power in situation where there is little irradiation was less than the average one, and the generation power in the dual-axis tracker amounted to 41[%], the single-axis tracker to 40[%], and the fixed system to 36[%].

  • PDF

태양광발전설비 안전관리 현황 분석 (Analysis of the Status of Safety Management of Photovoltaic Power Generation Facilities)

  • 김완수;박상준;안성렬
    • Current Photovoltaic Research
    • /
    • 제7권2호
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, we analyzed the present status of the safety manager and safety assurance aspects through a complex analysis on the operational aspects, marketability and electrical safety aspects of photovoltaic power generation facilities. In the analysis of the equipment status, we analyzed the status and operated status of the installed PV system in Korea and the correlation between the safety manager and the accident. In addition, we analyzed the direction of the ESS through the analysis of the installation status of the ESS, and applied it to the interpretation part of the ESS associated with the solar power generation. The status of the electric safety manager can be used to analyze the data for selecting the electric safety manager by capacity by analyzing the accident status, the electric safety manager operation status, the safety management time by capacity, and the electric safety manager market.

태양광 모듈 출력 보상을 위한 마이크로컨버터 시제품 동작 특성 분석 (Characteristics Analysis of Proto-type Microconverter for Power Output Compensation of Photovoltaic Modules)

  • 김지현;김주희;이정준;박종성;김창헌
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.133-137
    • /
    • 2022
  • The economic feasibility of a photovoltaic (PV) system is greatly influenced by the initial investment cost for system installation. Also, electricity generation by PV system is highly important. The profits competitiveness of PV system will be maximized through intelligent operation and maintenance (O&M). Here, we developed a microconverter which can maximize electricity generation from PV modules by tracking the maximum power point of PV modules, and help efficient O&M. Also, the microconverter mitigates current mismatch caused by shading, hence maximize power generation. The microconverters were installed PV modules and demonstrated through the field tests. Power outputs such as voltage, string current were measured with variuos weather environments and partial shadings. We found that PV modules with the microconvertors shows 12.05% higher power generation compared to the reference PV modules.