• 제목/요약/키워드: Photovoltaic DC-DC Power Converter

검색결과 179건 처리시간 0.022초

태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성 (Battery Discharge System Configuration using Photovoltaic Simulator and PCS)

  • 정다움;박성민;박성미;박성준;문승필
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.

PPT 기반 MPPT 컨버터에 의한 태양광 발전시스템의 효율 개선 (An Efficiency Improvement of the Photovoltaic Generation System by Using the PPT based MPPT Converter)

  • 이은철;이성룡
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권4호
    • /
    • pp.216-223
    • /
    • 2006
  • In this paper, a methodology for the efficiency improvement of the photovoltaic system without adding some elements or increasing the cost comparing with the conventional system is discussed. It is suggested the optimal photovoltaic module configuration through its performance analysis, and also the suitable maximum power point tracking (MPPT) voltage considered the system cost and the efficiency of the converter. The high efficiency photovoltaic system by using the parallel power transfer (PPT) based MPPT converter is proposed and analyzed theoretically comparing with the conventional Buck type MPPT converter. Finally, it is designed and implemented the proposed photovoltaic system for supplying DC 48V by using the PPT based MPPT converter. And the effect of the efficiency improvement and the usefulness of the proposed system is proved through some preliminary simulation and experiment results.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

60Hz 절연변압기가 없는 고주파링크방식 계통연계형 태양광발전시스템 고찰 (Study of 60Hz Transformer-less High Frequency Linked Grid-Connected Power Conditioners for Photovoltaic Power System)

  • 유권종;정영석;최주엽
    • 전력전자학회논문지
    • /
    • 제7권6호
    • /
    • pp.563-569
    • /
    • 2002
  • 본 연구는 60Hz 절연변압기가 없는 형태의 고주파링크방식의 계통연계형 PCS(Power Conditioning System)를 개발하였다. 본 시스템은 고주파 DC-DC 컨버터, 고주파 절연변압기, 풀브리지 다이오드 정류기, DC filter, 저주파 인버터, LC 필터로 구성되어 있다. 고주파 DC-DC 컨버터는 20kHz의 bipolar PWM 펄스를 발생시키며, 이 펄스는 고주파 절연변압기를 통해 승압되고, 풀브리지 다이오드를 통해 정류된다. 마지막으로 저주파 인버터를 통해 정현파 전류가 계통에 유입되게 된다. 제안한 고주파링크방식의 시스템은 기존의 60Hz 절연변압기를 사용하는 시스템 보다 많은 스위칭 소자가 사용되지만, 60Hz 절연변압기를 생략함으로서 시스템의 소형경량화 및 저가화를 이룰 수 있었다.

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.

3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구 (A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System)

  • 남종하;강병희;고재석;최규하;신우석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF

DC-DC 컨버어터에 의한 태양광 발전 시스템에 관한 연구 (A Study on Photovoltaic Generation System by DC-DC converter)

  • 원충연;양승호;김학성;김세찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.486-491
    • /
    • 1991
  • The photovoltaic modules have each maximum power point, which depending on the intensity of sunlight, modules temperature and etc. Cuk converter is used to obtain the maximum charging power from photovoltaic modules to storage batteries. This paper proposed to a new tracking control method by detecting its current and voltage in photovoltaic power generation system controlled by microprocessor, in order to operate at the maximum power point tracking(MPPT) even if the sunlight and the temperature are varied.

  • PDF

전류제한 기능을 갖는 72[W ]급 파워 LED 태양광 보안등 (72[W] Power LED Photovoltaic Lighting System including the Current Limiting Function)

  • 박효식;한우용
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.2999-3004
    • /
    • 2010
  • LED는 다른 광원에 비해 동작수명이 길고, 친환경적이며, 에너지 효율이 높은 장점을 가지고 있다. 최근 LED 기술의 발전으로 인해 고휘도, 고용량의 LED가 개발됨에 따라, 표시장치에만 적용되던 LED를 조명장치에도 적용하는 기술이 확산되고 있다. 조명장치에 적용되는 파워 LED는 발열문제로 인한 소손을 막기 위해 구동전류를 일정한 전류값 이하로 제어할 필요성이 있다. 본 논문은 파워 LED의 구동전류를 설정된 값 이하로 제어하는 전류제 한 기능을 갖는 파워 LED 태양광 보안등 개발에 관한 연구이다. 태양광 발전에 의해 생산된 전력을 DC12[V] 축전지에 저장한 후, 야간에 승압형 DC-DC 컨버터를 통해 DC24[V]로 승압시켜 파워 LED로 공급한다. 태양광 보안등 제어기, 승압형 DC-DC 컨버터, 72[W]급 파워 LED 램프를 개발하여 동작을 확인하고 관련 데이터를 도출함으로써 제안된 시스템의 타당성을 입증하였다.

A Novel Grid-Connected PV PCS with New High Efficiency Converter

  • Min, Byung-Duk;Lee, Jong-Pil;Kim, Jong-Hyun;Kim, Tae-Jin;Yoo, Dong-Wook;Ryu, Kang-Ryoul;Kim, Jeong-Joong;Song, Eui-Ho
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.309-316
    • /
    • 2008
  • In this paper, new topology is proposed that can dramatically reduce the converter power rating and increase the efficiency of total PV system. Since the output voltage of PV module has very wide voltage range, in general, the DC/DC converter is used to get constant high DC voltage. According to analysis of PV characteristics, in proposed topology, only 20% power of total PV system power is needed for DC/DC converter. DC/DC converter used in proposed topology has flat efficiency curve at all load range and very high efficiency characteristics. The total system efficiency is the product of that of converter and that of inverter. In proposed topology, because the converter efficiency curve is flat all load range, the total system efficiency at the low power range is dramatically improved. The proposed topology is implemented for 200kW PCS system. This system has only three DC/DC converters with 20kW power rating each other. It is only one-third of total system power. The experiment results show that the proposed topology has good performance.