• Title/Summary/Keyword: Photovoltaic Angle Distortion

Search Result 2, Processing Time 0.014 seconds

Optimized Hybrid Modulation Strategy for AC Bypass Transformerless Single-Phase Photovoltaic Inverters

  • Deng, Shuhao;Sun, Yao;Yang, Jian;Zhu, Qi;Su, Mei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2129-2138
    • /
    • 2016
  • The full-bridge inverter, widely used for single-phase photovoltaic grid-connected applications, presents a leakage current issue. Therefore, an AC bypass branch is introduced to overcome this challenge. Nevertheless, existing modulation strategies entail drawbacks that should be addressed. One is the zero-crossing distortion (ZCD) of the AC current caused by neglecting the AC filter inductor voltage. Another is that the system cannot deliver reactive power because the AC bypass branch switches at the power frequency. To address these problems, this work proposes an optimized hybrid modulation strategy. To reduce ZCD, the phase angle of the inverter output voltage reference is shifted, thereby compensating for the neglected leading angle. To generate the reactive power, the interval of the negative power output is calculated using the power factor. In addition, the freewheeling switch is kept on when power is flowing into the grid and commutates at a high frequency when power is fed back to the DC side. In this manner, the dead-time insertion in the high-frequency switching area is minimized. Finally, the performances of the proposed modulation strategy and traditional strategies are compared on a universal prototype inverter. Experimental results validate the theoretical analysis.

Power Generation Change According to Angle Control of Solar Power Plant Panel (태양광 발전 패널 각도 제어에 따른 발전량 변화)

  • Han, Myung-Hee;Woo, Je-Teak;Lee, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.685-692
    • /
    • 2019
  • In this paper, the relationship between the angle control of the panel contributing to the optimum power generation efficiency of the solar power plant is investigated. For a total of eight months, one of the two plants with the same equipment configuration changed their angles every three months and the other plants did not change their angle. In this study, we propose a model that can maximize the power generation efficiency by comparing and analyzing the difference of power generation between stationary solar power station and stationary solar power station through simulation.