• 제목/요약/키워드: Photovoltaic/thermal

검색결과 307건 처리시간 0.021초

Push-pull 구조의 공액 고분자 합성 및 Phenothiazine의 질소 원자에 치환된 Side-chain에 따른 유기박막태양전지로의 특성 연구 (Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine)

  • 성기호;윤대희;우제완
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.624-631
    • /
    • 2014
  • 본 연구에서는 새로운 종류의 공액 고분자 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-(octyloxy)phenyl)-10H-phenothiazine (P1)과 3-(5-(5,6-bis(octyloxy)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-10-(4-((2-ethylhexyl)oxy)phenyl)-10H-phenothiazine (P2)를 스즈키 커플링 반응으로 합성하여 유기박막 태양전지로의 특성을 확인하였다. Push-pull 구조 고분자의 전자주개 물질로 phenothiazine 유도체를, 전자받개 물질로 benzothiadiazole 유도체를 사용하였다. 전자를 풍부하게 하고, 용해성을 향상시키기 위하여 phenothiazine의 질소 원자에 알콕시 사슬이 도입된 방향족 고리를 치환하여 2종의 고분자(P1, P2)를 합성하였다. P1, P2의 분자량은 각각 4,911, 5,294이었고, $T_d$는 각각 321.9, $323.7^{\circ}C$로 이로부터 열 안정성이 우수함을 확인하였으며, 최대흡수파장은 549, 566 nm이었다. 소자를 제작하여 유기박막태양전지의 특성을 측정한 결과, P1과 P2의 효율은 각각 0.96, 0.90%이었다.

스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구 (Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level)

  • 윤종호;오명환;강기환;이재범
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • 문주호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

수소생산 기술동향 (Technical Trends of Hydrogen Production)

  • 이신근;한재윤;김창현;임한권;정호영
    • 청정기술
    • /
    • 제23권2호
    • /
    • pp.121-132
    • /
    • 2017
  • 온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응 및 가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.

p-i-n 구조의 InSb 웨이퍼를 이용한 적외선 광다이오드의 제조 및 그 특성 (Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure)

  • 조준영;김종석;손승현;이종현;최시영
    • 센서학회지
    • /
    • 제8권3호
    • /
    • pp.239-246
    • /
    • 1999
  • MOCVD로 성장된 p-i-n 구조의 InSb 웨이퍼를 이용하여 $3{\sim}5\;{\mu}m$ 영역의 적외선을 감지할 수 는 고감도 광기전력 형태의 적외선 광다이오드를 제조하였다. InSb는 녹는점과 표면원자들의 증발온도가 낮기 때문에 광다이오드의 접합계면과 표면의 절연보호막으로 $SiO_2$ 박막을 원격 PECVD를 이용하여 성장시켰다. 광다이오드의 저항성 접촉을 위해 In을 증착하였고 77K의 암상태에서 전류-전압 특성을 조사하였다. 영전위 저항과 수광면적의 적($R_0A$)이 $1.56{\times}10^6\;{\Omega}{\cdot}cm^2$의 높은 값을 가졌는데 이는 BLIP 조건을 만족하는 높은 값이었다. InSb 광다이오드에 적외선을 입사 했을때 $10^{11}\;cm{\cdot}Hz^{1/2}{\cdot}W^{-1}$의 매우 높은 정규화된 검지도를 나타내었다. 높은 양자효율과 검지도로 인해 제조된 InSb 적외선 단위 셀을 적외선 array에 그 적용이 가능할 것으로 보인다.

  • PDF

신재생에너지 부문의 경제적 파급효과 분석 (The Economic Effects of the New and Renewable Energies Sector)

  • 임슬예;박소연;유승훈
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.31-40
    • /
    • 2014
  • 국제적인 온실가스 감축 논의에 대한 구체적인 대응방안의 하나로, 우리나라는 2035년까지 신재생에너지 보급률 11% 달성을 목표로 하는 제2차 에너지기본계획을 수립하였다. 국내 신재생에너지 부문은 8개 분야 재생에너지(태양열, 태양광발전, 바이오매스, 풍력, 소수력, 지열, 해양에너지, 폐기물에너지)와 3개 분야 신에너지(연료전지, 석탄액화가스화, 수소에너지) 등 총 11개 분야로 구성되어 있다. 신재생에너지 보급 확대를 위한 정부와 민간의 투자가 늘어나면서, 신재생에너지 부문의 경제적 파급효과를 규명할 필요성도 증가하고 있다. 이에 본 논문에서는 가장 최근에 발표된 2012년도 산업연관표를 이용한 산업연관분석을 적용하여 신재생에너지 부문의 경제적 파급효과를 분석하고자 한다. 먼저 수요유도형 모형을 이용하여 신재생에너지 부문의 생산유발효과, 부가가치 유발효과, 취업유발효과를 분석한다. 둘째, 공급유도형 모형을 활용하여 공급 지장효과를 살펴본다. 마지막으로 레온티에프 가격모형을 통해 물가파급효과를 도출한다. 분석결과는 다음과 같이 된다. 첫째, 신재생에너지 부문의 1원 생산 또는 투자는 2.1776원의 생산과 0.7080원의 부가가치를 유발한다. 아울러 신재생에너지 10억원 생산 또는 투자의 취업유발효과는 9.0337명이다. 둘째, 신재생에너지 부문의 1원 공급지장으로 인한 국민경제 전체적인 생산 차질액은 1.6314원으로 분석되어 그 값이 작지 않았다. 셋째, 신재생에너지 부문 산출물의 가격이 10% 오를 때의 국민경제 전체적인 물가파급효과는 0.0123%로 작은 편이다. 이상의 정량적 정보는 신재생에너지 부문의 생산 및 투자 확대의 경제적 파급효과를 사전적으로 예측하는 데 중요한 정보로 활용될 수 있다.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF