• 제목/요약/키워드: Photovoltaic(PV) Cell

검색결과 318건 처리시간 0.028초

영농형 태양광 구조물 활용 고부가가치 작물의 이상기후 영향 분석 (Investigation on the Effect of Abnormal Climate in High Value Added Crops Utilizing Agrophotovoltaic Structures)

  • 김우람;남재우;김근호;김덕성;임철현
    • Current Photovoltaic Research
    • /
    • 제9권2호
    • /
    • pp.45-50
    • /
    • 2021
  • Agrovoltaic system is a concept that combines agriculture and photovoltaic (PV) system by applying a PV system to the upper part of farmland. In this study, we developed a folding drive system for an agrophotovoltaic (agroPV) module (150 Wp/4×9 cell) exclusively for pear farming with 10 kW capacity. The system was installed in 2018, and the growth characteristics and quantity of pears under the agroPV folding system have been investigated for 2 years. We found that thare is no differences of the characteristics of pears grown under the agroPV system compared to the pears grown without the system (control) except the percutaneous color L of pear. However, the weight and sugar content of the pear grown under the agroPV system were decreased by 4.5% and 1.3°Bx compared to that of the control, respectively. We assume that this is mainly due to the influenced of the delay in flowering as upper PV module block some of sunlight. However, interestingly, when we deleyed the pear harvesting by 2 weeks, the weight of pears increased by 8.5% and they became nearly the sample as the control pears harvested 2 week earlier. In addition, we also found that the agroPV modules decrease the fall rate of pear when the typoon struck, also it mitigates cold damage by 38% during April by protecting from frost. In conclusion, it can be said that the agroPV system help to protect target crops from the environmental conditions and the quality of the crops are similar to the that of control.

반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가 (Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

Impedance Analysis and Surge Characteristics of PV Array

  • Lee K.O.;So J.H.;Jung M.W;Yu G.J.;Choi J. Y.;Ah H.S.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.235-238
    • /
    • 2003
  • Photovoltaic(PV) array, which is generally installed outside, has the possibility to be damaged by high voltage due to lightning. Because the surge characteristics of PV array have not b eon fully Identified yet, there is a very important issue whether PV array should be connected with ground or not. In this paper, a basic model of PV array is provided considering the PV cell's barrier capacitance and ground capacitance for analysis of surge characteristics.

  • PDF

Correlation between Reverse Voltage Characteristics and Bypass Diode Operation with Different Shading Conditions for c-Si Photovoltaic Module Package

  • Lim, Jong-Rok;Min, YongKi;Jung, Tae-Hee;Ahn, Jae-Hyun;Ahn, Hyung-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.577-584
    • /
    • 2015
  • A photovoltaic (PV) system generates electricity by installing a solar energy array; therefore, the photovoltaic system can be easily exposed to external factors, which include environmental factors such as temperature, humidity, and radiation. These factors-as well as shading, in particular-lead to power degradation. When there is an output loss in the solar cell of a PV module package, the output loss is partly controlled by the bypass diode. As solar cells become highly efficient, the characteristics of series resistance and parallel resistance improve, and the characteristics of reverse voltage change. A bypass diode is connected in parallel to the string that is connected in series to the PV module. Ideally, the bypass diode operates when the voltage is -0.6[V] around. This study examines the bypass diode operating time for different types of crystalline solar cells. It compares the reverse voltage characteristics between the single solar cell and polycrystalline solar cell. Special modules were produced for the experiment. The shading rate of the solar cell in the specially made solar energy module was raised by 5% each time to confirm that the bypass diode was operating. The operation of the bypass diode is affected not only by the reverse voltage but also by the forward bias. This tendency was verified as the number of strings increased.

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가 (Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period)

  • 정동은;염규환;이찬욱;도성록
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

BIPV를 활용한 건축물 디자인 계획에 관한 연구 (A Study on the Architectural Design Plans Using BIPV)

  • 전근식;류수훈
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권3호
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

A CONSIDERATION ON PHOTOVOLTAIC POWER GENERATION SYSTEMS

  • Sugisaka, Masanori;Nakanishi, Kiyokazu;Mitsuo, Noriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.468-468
    • /
    • 2000
  • In our laboratory, the control aspects are investigated in the photovoltaic power generation systems (PV systems). The PV system is very good for earth environment, but if it connects to power network system, many problems are raised (protection, voltage, harmonics etc.). In this paper, we present the result of the basic studies for the building of the PV system that amplifies the electric energy obtained from the solar cell. We consider electronic circuits in order to protect the PV system from power surge induced by lightning and also design an electronic circuit in order to detect defaults in the power network system. We would like to integrate these circuits into the PV system by considering its control equipment build by 8-bit microcomputer using various control theory (fuzzy, neural network etc.).

  • PDF

태양광 발전시스템에서 모듈 설치 각도와 어레이 간격의 비교 연구 (Comparison Researches for Installation of the Module Angles and Array Spacing on Photovoltaic Power System)

  • 최동진
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.162-168
    • /
    • 2009
  • 본 논문에서는 태양전지를 가지고 일정량의 태양광으로부터 최대 유효전력을 얻기 위해 고정식 태양광 발전시스템과 태양 위치추적기를 부착한 태양광 발전시스템에서 PV모듈의 각도 변화 및 어레이 간격에 따른 최적의 발전효율에 대한 연구 및 실험을 하였다. 먼저, PV 모듈의 다양한 각도를 가지고 실험한 결과 PV 모듈 경사각 30[$^{\circ}$]에서 측정한 결과 값이 경사각 20[$^{\circ}$] 및 40[$^{\circ}$]일 때보다 발전 효율이 $12{\sim}17$[%] 상승되었다. 그러므로 본 논문의 연구 결과에서는 태양광 발전시스템의 실용화 측면에서 PV 모듈의 경사각 30[$^{\circ}$] 설치를 하여 발전을 하는 것이 가장 좋은 변환 효율을 얻을 수 있었다. 하지만 태양전지를 지붕 및 옥상에 설치를 할 경우, 면적 활용이 좁고 겨울에 눈이 쌓이게 될 경우에는 경사각에 의해 빠르게 쓸려 내려갈 수 있도록 경사각을 35[$^{\circ}$]로 선정하는 것이 타당하다.