• 제목/요약/키워드: Photovoltaic(PV) Cell

검색결과 318건 처리시간 0.032초

반사판을 이용한 저집속 집광형 태양광 모듈 제작 및 평가 (Fabrication and Evaluation of Low Concentrator Photovoltaic Modules with Aluminium Reflectors)

  • 정혜정;이영우;주성민;이호재;부성재
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.17-22
    • /
    • 2008
  • A low concentrating (< 5X) photovoltaic module with aluminum reflectors is fabricated and evaluated which is designed to reduce the affection of the high temperature to the solar cell modules preventing the efficiency lowering. As results, the output power is increased of 1.97X from the concentrating photovoltaic module which is designed with the concentrating ratio of 2.25X and to control the module temperature cooling the module by air circulation. Also, the effect of the concentrating module with aluminum reflectors on the conventional PV module is investigated at the field. The result shows the increase of the output power more than about 20% and the improvement of the module efficiency of 1.4X in spite of the increase of average module temperature.

  • PDF

대규모 PV시스템의 태양전지 어레이 구성법 (Solar Cell Arrays Connection of Large Scale PV System)

  • 유권중;송진수;노명근;성세진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.326-328
    • /
    • 1996
  • The 10kW or 1MW model of a photovoltaic array written in PSPICE is presented in this paper. A problem with this large scale centralized photovoltaic system is the decrease of power due to the resistance of cable connecting individual subarray with inverter. In this paper, we analyzed the relationship between the resistance of cable and subarray output power of 1MW photovoltaic system by the PSPICE modeling. As a result of simulation, we can proved that photovoltaic array output power is limitted by the resistance of cable.

  • PDF

단결정 실리콘 태양전지의 집광형 시스템으로의 적용 가능성 (Application Possibility of Mono-Crystalline Silicon Solar Cell for Photovoltaic Concentrating System)

  • 강경찬;강기환;유권종;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.22-23
    • /
    • 2007
  • We tried to find the possibility of mono-crystalline silicon solar cell for photovoltaic concentrating system which is major cost portion for PV system using fresnel lens. With solar simulator and I-V curve tracer, we analyzed maximum output characteristics and measured the temperature of concentrated area using infrared camera. Because of temperature increase, there was no merit when concentrating. But at low radiant power, it showed more efficient operation. The combination of heat-sink technology and tracking system to our concentrating PV system would give better performance results.

  • PDF

고온고습시험에 의한 멀티 와이어 PV 모듈의 금속 간 화합물 층의 성장에 관한 연구 (A Study on Growth of Intermetallic Compounds Layer of Photovoltaic Module Interconnected by Multi-wires under Damp-heat Conditions)

  • 문지연;조성현;손형진;전다영;김성현
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.124-128
    • /
    • 2020
  • Output power of photovoltaic (PV) modules installed outdoors decreases every year due to environmental conditions such as temperature, humidity, and ultraviolet irradiations. In order to promote the installation of PV modules, the reliability must be guaranteed. One of the important factors affecting reliability is intermetallic compounds (IMC) layer formed in ribbon solder joint. For this reason, various studies on soldering properties between the ribbon and cell have been performed to solve the reliability deterioration caused by excessive growth of the IMC layer. However, the IMC layer of the PV module interconnected by multi-wires has been studied less than using the ribbon. It is necessary to study soldering characteristics of the multi-wire module for improvement of its reliability. In this study, we analyzed the growth of IMC layer of the PV module with multi-wire and the degradation of output power through damp-heat test. The fabricated modules were exposed to damp-heat conditions (85 ºC and 85 % relative humidity) for 1000 hours and the output powers of the modules before and after the damp-heat test were measured. Then, the process of dissolving ethylene vinyl acetate (EVA) as an encapsulant of the modules was performed to observe the IMC layer. The growth of IMC layer was evaluated using OM and FE-SEM for cross-sectional analysis and EDS for elemental mapping. Based on these results, we investigated the correlation between the IMC layer and output power of modules.

PV모듈의 냉각장치를 적용한 집속형 복합패널의 집열 특성 평가 (Thermal Characteristics Evaluation of Concentrated Hybrid Panel with cooling system on PV module)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.47-52
    • /
    • 2005
  • Normally if sunlight is directed on a solar cell without any increasing in temperature, the amount of absorption energy per unit area of each cell is increasing. In a silicon solar cell. however, cell conversion efficiency decreases with the increase of temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. We tried to design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect and use thermal energy more effectively. We compared performance of this new hybrid panel with current thermal panel. We also evaluated conversion efficiency, thermal capacity and confirmed cooling effects from thermal absorption efficiency.

재 제조 태양광모듈의 내구성능 평가 연구 (Durability Evaluation Study of Re-manufactured Photovoltaic Modules)

  • 김경수
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구 (The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test)

  • 강민수;김도석;전유재;신영의
    • 에너지공학
    • /
    • 제21권1호
    • /
    • pp.26-32
    • /
    • 2012
  • 본 연구에서는 PV(photovoltaic)모듈에서 경년에 따른 효율 저하의 원인을 분석하기 위해 셀 레벨에서의 열충격 시험을 수행하였다. 열충격 시험의 조건은 $-40^{\circ}C$에서 $85^{\circ}C$로 각각 15분씩 30분을 1사이클로 하였으며, 열충격 시험 500 사이클 동안 100 사이클 간격으로 EL분석 및 I-V분석을 수행하였다. 효율 감소율은 단결정 Bare Cell이 8%, Solar Cell이 9%였으며, 다결정 Bare Cell이 6%, Solar Cell이 13%의 감소율을 보였다. 열충격 시험 후 Solar Cell은 표면 손상으로 인한 효율저하를 확인할 수 있었다. Bare Cell의 경우 표면의 손상이 없었지만, 효율이 저하된 것을 확인할 수 있었다. 이는 Fill Factor 분석에 의해 경년 시 나타나는 누설전류에 의한 소모전력 증가로 효율 저하에 영향을 준 것으로 판단된다. 또한, Bare Cell보다 Solar Cell에서의 효율 감소율이 상대적으로 높게 나타난 결과는 표면 손상 및 소모 전력의 증가로 인해 Solar Cell 효율에 큰 영향을 미치는 것으로 판단된다. 향후 단면 분석법 및 다양한 조건의 시험 기법을 활용하여 PV모듈 뿐 아니라 Cell 레벨에서의 불규칙한 효율 및 Fill Factor의 감소 원인을 검토하고, Solar Cell에서의 효율 저하가 가속되는 원인에 대한 대책 방안 연구가 수행되어야 할 것이다.

전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석 (Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste)

  • 윤희상;송형준;고석환;주영철;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석 (The electrical effects of PV cell's short-circuit current difference for PV module application)

  • 김승태;박지홍;강기환;안형근;한득영;유권종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF