• Title/Summary/Keyword: Photovoltaic's array

Search Result 57, Processing Time 0.022 seconds

Performance Results and Analysis of 50kW Grid-Connected PV System (50kW 계통연계형 태양광발전시스템의 성능특성 결과분석)

  • So J.H.;Jung Y.S.;Yu B.G.;Hwang H.M.;Yu G.J.;Choi J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.219-221
    • /
    • 2006
  • This paper presents the performance results of 50kW grid-connected PV (Photovoltaic) system for monitoring periods. Form these performance monitoring results, the PV system performance has been evaluated and analyzed for component perspective (PV array and power conditioning unit) and global perspective (system efficiency, capacity factor, and electrical power energy and power quality etc.).

  • PDF

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF

A Study on Development of Power Analysing Device for PV Module (태양전지 모듈의 발전량 분석 장치 개발에 관한 연구)

  • Moon, Chae-Joo;Kwak, Seung-Hun;Jang, Yeong-Hak;Kim, Tae-Gon;Kim, Eui-Sun;Kim, Tae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • This study was conducted to estimate the relative performance of modules with changed characteristics due to long term exposure to the outdoor environment, with a specially made test device for simultaneous measurement of real time power output from the photovoltaic array, taking into account the inclined panel, direct irradiation, power being generated, temperature as well as the optimal analysis timing. In terminology description, M is an abbreviation of module and Group A, Group B are 10 modules series connection (1~10 of M), (11~20 of M) for each of them respectively. The overall mean voltage difference of M-18 with the lowest power output and M-14 with the highest output is-2.13V and it was identifiable that voltage difference was more concentrated to Group B. In addition, in case of M-2 and M-7, M-8, when compared with M-14, the overall mean voltage difference was -0.92V, -1.56 and -0.91V respectively showing the more concentration to Group A. When the temperature of module went up by $1^{\circ}C$, the mean voltage was reduced by 0.35V. For current, Group A was lower than Group B by-0.022A and the ratio of each group was 49.68% and 50.32% respectively, presumably the module with deteriorated properties were more concentrated to Group A relatively. From the comparison of relations with the comprehensive accumulation, M-2, M-7, M-8, M-16 and M-18 were those with deterioration of performance to the worst, thereby requiring precision examination. In comparative efficiency, M-14 was the most excellent one as 12.19% while M-18 as 10.53% was identified that its efficiency was comparatively rapidly reduced.

Performance Analysis of Photovoltaic System for Greenhouse (태양광 발전시스템의 발전 성능 분석)

  • Kwon, Sun-Ju;Min, Young-Bong;Choi, Jin-Sik;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.143-152
    • /
    • 2012
  • This study was performed to reduce the operating cost of a greenhouse by securing electric energy required for greenhouse operation. Therefore, it experimentally reviewed the performance analysis of photovoltaic system in terms of maximum amount of generated electric power based on the amount of horizontal solar radiation during daytime. That is to say, the maximum solar radiation at 300, 400, 500, 600, 700, 800 and 900 W. $m^{-2}$, respectively. The amount of momentary electric power of the photovoltaic system at any was about 970 W and we found that the momentary efficiency of the photovoltaic system that was used for this experiment was 97%. In the case of this system, we found that electric power will be generated when amount of horizontal solar radiation is more than 200 W. $m^{-2}$, at minimum. If the amount of horizontal solar radiation is increased, the maximum power generation is also increased. At that time, the maximum efficiencies were 30, 78, 86 and 90%, respectively. However, when the amount of insolation was about 800 W. $m^{-2}$, the maximum power generation tended to be lower than 700 W. $m^{-2}$. The efficiency which caused the maximum electric power was decreased to less than 97% of the momentary generated electric power. When the total amounts of horizontal solar radiation per day were 3.24, 8.10, 10, 90, 12.70, 14.33, 19.53 and $21.48MJ{\cdot}m^{-2}$ respectively, the total amounts of power energy were 0.03, 0.40, 3.60, 4.37, 4.71, 4.70 and 4.91 kWh. And it represented that the total amounts of power energy were either decreased or increased a bit on the border between some solar radiations. The temperature at the back of the array tended to be higher than the temperature at the front but it demonstrated an increased when the amount of solar radiation increased. In the case of this system, the performance of the module in terms of degradation has not been shown yet.

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

The Arch Type PV System Performance Evaluation of Multi Controlled Inverter for Improve the Efficiency (효율개선을 위한 다중제어 인버터방식의 아치형 PV System 성능 분석)

  • Lee, Mi-Yong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5452-5457
    • /
    • 2012
  • It is saving material cost and construction cost by replacing conventional building materials, and It has advantages for aesthetic value. In the Europe, the United States, Japan and other country research about BIPV is actively being carried out and marketability is also being infinity expanding. Arch type PV systems efficiency characteristics is different depending on PV array's directly connection, parallel connection and arches angle, but is a lack of analysis on this nowadays. When the arch type PV system design up, they consider about aesthetic value and they didn't consider about generation efficiency. In this paper, we try to improve the efficiency through optimization of arch type PV system and estimation of the efficiency parameters of the arch type PV system, such as latitude, longitude, temperature, insolation, arch angle and each kind loss from system organization. For improving Arched PV system efficiency, proposed multiple control inverter system, and using simulation tool of Arched PV system "Solar pro", flat-plate type and many arch type PV system configuration the driving characteristics were compared and analyzed.

A Study on the Natural Energy Effect about the Address No.0 of Eco-friendly Architecture (생태건축 0번지의 자연에너지 효과에 관한 연구)

  • Lee, Si-Woong;Kang, Byung-Ho;Lim, Sang-Hoon;Choi, Seung-Hee
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.19-25
    • /
    • 2003
  • The Address No.0 of Eco-friendly Architecture offers unique experience for those who visit the place to envisage the future architecture where nature, human and building exist in harmony. It is open to the general public including the students of elementary and secondary schools. This house has been built to provide opportunities for the general public to experience eco-friendly architecture. It's floor area is 42 pyung($140m^2$) and the overall site has the area of 180 pyung($600m^2$). The following illustrates some of its prominent features : ${\bullet}$ Remodeling of a traditional Korean residence ${\bullet}$ Application of passive solar systems ${\bullet}$ Use of clerestory windows and daylighting systems(washroom and machine room) ${\bullet}$ Operation of solar water heaters with flat plate collectors ${\bullet}$ Construction of Biotop(small ecological world) ${\bullet}$ Water circulation for Biotop by photovoltaic(150W) and wind power(400W) generation ${\bullet}$ Outdoor hot water supplied by all-glass evacuated solar tubes. Through this Address No.0 of Eco-friendly Architeture conclusions are as followings. 1. The array of tubes in collector has the best nice in that the number of tube is nine and the tilt angle is the latitude $+20^{\circ}$. 2. The thermal performance of the all-glass solar vacuum collector was excellent than of the flate-plate solar collector. 3. The adaption of new small wind power systems to buildings were proved to produce a profit if it is considered the expense of environment improvement and the wind speed increasing according to rise of building hight.