• 제목/요약/키워드: Photovoltaic's array

검색결과 57건 처리시간 0.026초

태양광어레이 방위각 및 경사각 변화에 따른 일사량 영향분석에 관한 연구 (A Study on the Influence to Solar Radiation by Changing the Azimuth and Tilt of a Photovoltaic Array)

  • 최영관;이남형;김건중;조용
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.712-716
    • /
    • 2013
  • In solar generation, the PV array's azimuth is headed due south and the tilt is generally $33^{\circ}$ in order to acquire maximum generation. However, when installed in a site where there are buildings or other facilities, the azimuth and tilt are adjusted. Yet, when the azimuth and tilt are deviated from due south and $33^{\circ}$, the generation quantity is decreased substantially and currently a method to estimate the decreasing proportion is unavailable. Therefore, in this thesis, an equation on the "change ratio of solar radiation due to the changes in tilt and azimuth" was deduced by utilizing empirical data on the amount of solar radiation received according to the changes of tilt and azimuth and Interpolation. By using this equation, the decreasing proportion of generating quantity due to the installation methods of PV system can be estimated, therefore, it can be usefully utilized when designing and going through feasibility studies for development of solar generation systems.

비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발 (Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design)

  • 홍성문;김대성;김민철;김주형
    • 한국BIM학회 논문집
    • /
    • 제5권4호
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

Microprocessor를 이용한 태양전지의 최대 출력점 추적 제어 (Tracking Control of Maximum Power Point of Photovoltaic Array by using the Microprocessor)

  • 한경희;장경현;권혁;김대균;이완기;강승욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.492-495
    • /
    • 1991
  • This paper proposes the microprocessor-based step-up chopper system used for the battery charge from the photovoltaic arrays. The proposed scheme tracks the maximum power point by analyzing the voltage and power phasors which vary as the solar irradiation quantity. In this system, protection for the overcharge and overdischarge in also provided.

  • PDF

변압기 없는 계통연계형 PV PCS에서의 MPPT 제어기법 비교 분석 (Comparison and analysis of the MPPT algorithms in transformerless grid-connected PV PCS)

  • 이경수;정영석;소정훈;유권종;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1471-1473
    • /
    • 2004
  • Maximum power point tracking(MPPT) is used in photovoltaic(PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and irradiation conditions. The object of this paper is to compare and analyze MPPT efficiency for different MPPT techniques by changing irradiance. Also, this paper introduces transformerless grid-connected inverter. Simple flow charts and characteristics of each MPPT algorithm are shown. The implementation of transformerless grid-connected inveter system was based on a digital signal processor(DSP). Simulation was carried out for each MPPT method.

  • PDF

태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측 (Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors)

  • 이일룡;배인수;심헌;김진오
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권4호
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

컴퓨터기반의 DAS를 적용한 태양광 조명설비의 운용패턴 고찰 (Load Pattern Considerations of The Photovoltaic Lighting System by Using Computer-based Date Acquisition System)

  • 황명근;허창수
    • 조명전기설비학회논문지
    • /
    • 제17권3호
    • /
    • pp.1-10
    • /
    • 2003
  • 옥외 조명 시스템의 응용으로 두 가지 태양광설비(PV) 조명방식에 저압나트륨 램프(low pressure sodium: LPS)와 무전극 램프(electrodeless lamp)를 부하로 한 조명설비 시스템을 설계·제작·설치하며, 전지 수명을 고려한 감시 목적으로 데이터 수집에 유효한 랩뷰(Labview) 프로그램을 사용하였다. 설치된 PV 시스템에서 태양전지 배열로부터 만들어진 전원 및 그것의 최대 출력에 비교된 에너지 손실을 실험하였고, PV 시스템 개체구성 요소들의 성능을 관찰하였으며, 설치된 PV 조명방식들의 성능을 분석한 후, 태양전지 배열 음량을 줄이는 가능성에 대한 태양광 조명설비 동작특성에 대해 고찰하였다.

PV PHIL-시뮬레이터의 성능 개선을 위한 최적의 운영제어 알고리즘 연구 (A study on advanced PV operation algorithm to improve the PV Power-Hardware-In-Loop Simulator)

  • 김대진;김병기;고희상;장문석;유경상
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.444-453
    • /
    • 2017
  • 기존 RTDS를 이용한 PV PHIL(Power-Hardware-In-Loop) Simulator는 확장성과 유연성의 문제로 인하여 일반 DC Amplifier를 이용한 많은 연구가 진행되었으나, PV Inverter와 연계할 경우에 과도 상태의 출력이 발생하여 안정성과 PV Inverter의 성능 개선이 불가능하였다. 따라서, 이러한 문제점을 해결하기 위하여 본 논문에서는 PV PHILS의 출력 성능 향상과 안정적인 운영이 이루어질 수 있는 제어 알고리즘을 제안한다. 즉, 이 제어 알고리즘은 DC Amplifier의 전기적 출력 특성을 극복하기 위해 정전압(CV), 정전류(CC) 상태에 따라 전압, 전류의 목표 값을 제어하고 각 장치별 특성 고려한 Multi-rate 기반의 특성을 갖는다. 먼저, PV Array의 수학적인 모델링과 DC Amplifier 그리고 DC 전력측정용 Isolated 장치와 통합하여 실시간 처리 기반의 장치로 구성하였고, 제안한 알고리즘이 적용된 PV PHILS와 실제 계통에 연계된 PV Inverter를 이용한 성능시험을 통해서, 그 결과가 기존 방법에 대비해 우수성 및 유용성을 입증하였다.

태양전지 가상구현 시스템[50W]의 병렬연결 출력특성에 대한 분석 (Analysis of Parallel Characteristics for Virtual Implement of 50[W]Solar Cell modules)

  • 이병인;정병환;전윤석;최규하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.362-364
    • /
    • 2003
  • Generally, photovoltaic system is composed a number of solar cells array. so, virtual implementation module for solar cell array is needed Parallel connection each module for extract the power. A desirable characteristic of a parallel supply system is that individual converters share the load current equally and stably. The current sharing(CS) can be implemented using two approaches. The first one, known as a droop method, relies on the high output impedance of each converter. and The second approach, known as active current-sharing techniques. In this paper, analyze for better control logic of parallel connecting virtual implements of solar cell at using droop method.

  • PDF

Evaluation of a FPGA controlled distributed PV system under partial shading condition

  • Chao, Ru-Min;Ko, Shih-Hung;Chen, Po-Lung
    • Advances in Energy Research
    • /
    • 제1권2호
    • /
    • pp.97-106
    • /
    • 2013
  • This study designs and tests a photovoltaic system with distributed maximum power point tracking (DMPPT) methodology using a field programmable gate array (FPGA) controller. Each solar panel in the distributed PV system is equipped with a newly designed DC/DC converter and the panel's voltage output is regulated by a FPGA controller using PI control. Power from each solar panel on the system is optimized by another controller where the quadratic maximization MPPT algorithm is used to ensure the panel's output power is always maximized. Experiments are carried out at atmospheric insolation with partial shading conditions using 4 amorphous silicon thin film solar panels of 2 different grades fabricated by Chi-Mei Energy. It is found that distributed MPPT requires only 100ms to find the maximum power point of the system. Compared with the traditional centralized PV (CPV) system, the distributed PV (DPV) system harvests more than 4% of solar energy in atmospheric weather condition, and 22% in average under 19% partial shading of one solar panel in the system. Test results for a 1.84 kW rated system composed by 8 poly-Si PV panels using another DC/DC converter design also confirm that the proposed system can be easily implemented into a larger PV power system. Additionally, the use of NI sbRIO-9642 FPGA-based controller is capable of controlling over 16 sets of PV modules, and a number of controllers can cooperate via the network if needed.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.