• 제목/요약/키워드: Photosystem II activity

검색결과 51건 처리시간 0.03초

자생 산개벚나무, 잔털벚나무의 건조 스트레스에 따른 광합성 및 광계II 활성, 엽온 인자 변화 분석 (Analysis of Changes in Photosynthetic Ability, Photosystem II Activity, and Canopy Temperature Factor in Response to Drought S tress on Native Prunus maximowiczii and Prunus serrulate)

  • 진언주;윤준혁;배은지
    • 한국산림과학회지
    • /
    • 제111권3호
    • /
    • pp.405-417
    • /
    • 2022
  • 본 연구는 건조 스트레스에 따른 Prunus maximowiczii(산개벚나무) 및 Prunus serrulate Lindl. var. pubescens(Makino)Nakai(잔털벚나무)의 광합성 특성 및 광계II 활성에 미치는 영향을 알아보고자 수행하였으며, 건조 스트레스(drought stress, DS)는 30일간의 단수처리를 통해 유도하였다. 건조 스트레스가 진행됨에 따라 토양 수분함량은 감소하였으며, DS 10~12일 사이에 두 수종모두 10% 이하로 건조한 상태가 되고, DS 15일 이후부터는 5% 이하로 나타나 위조가 시작되는 조건에 해당되었다. DS 10일부터 최대광합성 속도, 광보상점의 감소가 두드러졌고, 암호흡 및 순양자수율은 DS 15일에 크게 감소하다가 DS 20일 이후부터 증가하는 경향을 보였다. 또한 산개벚나무의 기공증산속도는 DS 15일에 크게 감소한 뒤 DS 20일 이후부터 증가하였으며, 수분이용효율은 DS 15일에 증가한 뒤 DS 20일 이후부터 감소하였다. 잔털벚나무의 경우 기공증산속도는 DS 20일에 크게 감소한 뒤 이후부터 증가하였으며, 수분이용효율은 DS 20일에 증가한 뒤 이후부터 감소하는 경향을 보였다. 이는 수분 손실을 막기 위해 기공을 닫게 되어 수분이용효율이 일시적으로 증가한 것을 의미한다. 엽록소 형광분석을 통해 산개벚나무는 DS 15일, 잔털벚나무는 DS 20일 이후에 기능지수(PIABS) 및 에너지전달 효율의 감소가 두드려졌으며, 광계II의 활성이 감소되었다. 특히, Ts-Ta, PIABS, DIO/RC, ETO/RC는 토양수분함량의 감소와 광합성 특성과도 유사하게 나타나, 수목의 건조 스트레스를 평가하는데 있어서 유용한 변수로 활용될 수 있을 것으로 보인다.

두릅나무과 식물의 SOD 활성과 광계II의 광화학적 효율에 미치는 온도 스트레스와 Paraquat의 영향 (Effects of Temperature Stress and Paraquat on SOD Activity and Photochemical Efficiency of PSII in Leaves of Araliaceae Plants)

  • 오순자;고정군;김응식;오문유;고석찬
    • 환경생물
    • /
    • 제17권2호
    • /
    • pp.199-204
    • /
    • 1999
  • 여름철 자연조건에서 자라는 두릅나무과 식물 잎의 SOD활성과 광계II의 광화학적 효율의 차이를 분석하고 온도 스트레스와 paraquat의 영향을 조사하였다. 그 결과, 두릅나무과 식물 6종의 잎으로부터 총 8개의 superoxide dismutase(SOD) isoenzyme이 구분되었다. 그 중, 섬오갈피나무 (Acanthopanax koreanum)에서는 두릅나무과 식물에 공통적인 2개의 isoenzyme (SOD 4와 SOD 6)이 높은 활성으로 검출되었고, 황칠나무(Dendropanax morbifera)에서는 두릅나무과 식물이 갖는 8개의 isoenzyme이 모두 검출되었다. 광계II의 광화학적 효율을 나타내는 Fv/Fm은 낙엽성 식물에서는 섬오갈피나무가 다른 종보다 높았으며, 상록성 식물에서는 음지에 위치해 있는 잎이 양지에 위치해 있는 잎보다 전반적으로 높게 나타났다. 섬오갈피나무 잎 disc의 Fv/Fm은 온도가 높아짐에 따라 감소하였지만 황칠나무 잎 disc에서는 35$^{\circ}C$에서 현저하게 감소하였다. 그리고 온도 스트레스와 함께 paraquat를 처리하였을 때 섬오갈피나무에서는 4$^{\circ}C$에서, 황칠나무에서는 35$^{\circ}C$에서 Fv/Fm이 억제되었다. 한편, SOD 활성은 섬오갈피나무 잎 disc에서는 4$^{\circ}C$와 28$^{\circ}C$에서 높았고 paraquat를 함께 처리하였을 매에는 모든 온도에서 활성이 높아졌다. .그러나, 황칠나무 잎 disc에서는 온도가 높아짐에 따라 SOD활성이 억제되었고 paraquat를 함께 처리하였을 때에는 더욱 억제되었다. 따라서, 섬오갈피나무는 황칠나무에 비하여 온도 스트레스나 산화적 스트레스에 효율적으로 대처하는 것으로 나타났다.

  • PDF

The Effects of Salt Stress on Photosynthetic Electron Transport and Thylakoid Membrane Proteins in the Cyanobacterium Spirulina platensis

  • Sudhir, Putty-Reddy;Pogoryelov, Denys;Kovacs, Laszlo;Garab, Gyozo;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.481-485
    • /
    • 2005
  • The response of Spirulina (Arthrospira) platensis to high salt stress was investigated by incubating the cells in light of moderate intensity in the presence of 0.8 M NaCl. NaCl caused a decrease in photosystem II (PSII) mediated oxygen evolution activity and increase in photosystem I (PSI) activity and the amount of P700. Similarly maximal efficiency of PSII (Fv/Fm) and variable fluorescence (Fv/Fo) were also declined in salt-stressed cells. Western blot analysis reveal that the inhibition in PSII activity is due to a 40% loss of a thylakoid membrane protein, known as D1, which is located in PSII reaction center. NaCl treatment of cells also resulted in the alterations of other thylakoid membrane proteins: most prominently, a dramatic diminishment of the 47-kDa chlorophyll protein (CP) and 94-kDa protein, and accumulation of a 17-kDa protein band were observed in SDS-PAGE. The changes in 47-kDa and 94-kDa proteins lead to the decreased energy transfer from light harvesting antenna to PSII, which was accompanied by alterations in the chlorophyll fluorescence emission spectra of whole cells and isolated thylakoids. Therefore we conclude that salt stress has various effects on photosynthetic electron transport activities due to the marked alterations in the composition of thylakoid membrane proteins.

겨울철 저온스트레스에 의한 문주란의 광합성효율과 psbA 유전자의 발현양상 (Photochemical Efficiency and psbA Gene Expression of Crinum Leaves under Natural Environmental Stress in Winter)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제13권4호
    • /
    • pp.359-365
    • /
    • 2004
  • The change of chlorophyll fluorescence parameters, O-J-I-P transients and psbA gene expression were investigated in the leaves of Crinum asiaticum var. japonicum on the natural condition in winter, in order to elucidate physiological responses of photosystem II (PS II) activity to winter stresses. The photochemical efficiencies of PS II, Fv/Fm, were significantly low in winter, contrary to its high value in summer. The values of I -qN and I-qP were lower in midday than at dawn or night both in summer and winter, although their decrease in midday was less in winter than in summer. In the O-J-I-P transients, the fluorescence intensity of J, I, P-step decreased remarkably depending on temperature drop in winter. And the D I reaction center protein of PS II decreased in late winter more than in early winter, concomitantly with relatively high content of description products of psbA gene in midday. These results indicate that low temperature in winter causes irreversible damage to PS II and subsequently leads to cell death.

제초제(除草劑)에 대한 식물(植物)의 저항성(抵抗性) (Resistance of Plants to Herbicide)

  • 김길웅
    • 한국잡초학회지
    • /
    • 제4권1호
    • /
    • pp.96-106
    • /
    • 1984
  • Changes in weed floras and development of plant resistance to herbicides seemed to be closely related with increased and repeated use of herbicides. Herbicide use increased from 5% of the total consumption of pesticide in 1950 to 45% in 1976 in world basis. About 200 herbicides have been introduced to agriculture so as to control about 206 weed species which have been recorded important to human beings. In Korea, there was about 351 times in increased use of herbicides from 1966 to 1982. Interspecific selection by herbicide is mainly responsible for changes in weed floras and resulted in varying tolerance or susceptibility to herbicides, together with the changes of agricultural practices. The present trend toward continuous cereal cultivation throughout world will lead to type of changes in weed floras favorable to therophyte which can survive under unfavorable conditions as seeds rather than the types of geophyte which can survive unfavorable seasons as buds placed below soil surface. However, geophyte such as Sagitaria pygmaea, and Scirpus jurtcoides, and Cyperus rotundus and Cynodon dactylon in temperate warm climate become severe paddy weeds, presumably because of the removal of annual weeds by herbicides. Since differential tolerance to 2,4-D was firstly reported in Agrostis stolofera, about 30 species of weeds in 18 genera are presently known to have developed resistance to triazine herbicides. Resistance of weed biotypes to triazine herbicide is not mainly due to limited absorption and translocation or to the difference in metabolism, but is the result of biochemical changes at the site of metabolic activity, such as a loss of herbicide affinity for triazine binding site in the photosystem II complex of the chloroplast membrane. Genetical study showed that plastid resistance to triazine was wholly inherited through cytoplasmic DNA in the case of Brassica campestris. Plant tissue culture method can be utilized as an alternate mean of herbicide screening and development of resistance variants to herbicides as suggested by Chaleff and Parsons. In this purpose, one should be certain that the primary target process is operational in cell culture. Further, there are a variety of obstacles in doing this type of research, particularly development of resistance source and it's regeneration because cultured cells and whole plants represent different developmental state.

  • PDF

Greening에 따른 유채 자엽의 엽록소-단백질 복합체 형성 (Formation of Chlorophyll-Protein Complexes in Greening Rape Cotyledons)

  • 이진범
    • Journal of Plant Biology
    • /
    • 제26권2호
    • /
    • pp.91-99
    • /
    • 1983
  • The formation of chlorophyll-protein complexes (CP-complexes) during the greening of rape cotyledons (Brassica napus cv. Yongdang) was investigated by the SDS-polyacrylamide gel electrophoresis. The total chlorophyll content and Chl a/b ratio were also determined. In addition, the effects of dark treatment on the CP-complex patterns during greening have been examined with respect to their photosynthetic electron transport activity. Greening has brought about the increasein total chlorophyll content and the decrease in Chl a/b ratio, but there have been no changes in Chl a/b ratio after 24 hrs of greening. The light-harvesting chlorophyll a/b-protein complex (LHCP-complex0 was predominant during the initial greening period. Thereafter, the amout of chlorophyll a-protein complex (CP I-complex) was gradually increased. Twenty-four-hr dark treatment immediately after illumination for 6 hrs and 12 hrs resulted in the increase of the Chl a/b ration and the CP I complex, otherwise the decrease of the LHCP-complex. The LHCP/CP I ratio was gradually decreased with further greening, and appeared no change after 48 hrs illumination. The investigation of the photosynthetic electron transport activity indicated that photosystem (PS) II activity (H2Olongrightarrowp-PD*+FeCy**) did not change, but the activity of PS I was increased suddenly due to the dark treatment. The data suggests that the increase of CP I-complex may result in that of P-700, that is, the increase of PS I activity.

  • PDF

보리와 옥수수 잎의 색소, 단백질 함량 및 관계II 활성에 미치는 ${SO}^2$의 영향 (Effects of Sulfur Dioxide on Pigments, Frotein Content and Photosystem II Activity of Barley and Corn Leaves)

  • 정화숙
    • Journal of Plant Biology
    • /
    • 제25권3호
    • /
    • pp.135-151
    • /
    • 1982
  • This investigation was carried out to clarify the changes of pigments and soluble protein, and photosystem II activity in the leaves of barley (${SO}_2$-sensitive) and corn (${SO}_2$-resistant) seedlings induced by the ${SO}_2$ fumigation (10, 50ppm). The pH changes of the leaf extract, the content of sulfite and sulfate, the activities of catalase, peroxidase, and polyphenoloxidase were compared in the leaves of barley and corn seedlings induced by ${SO}_2$ fumigation. The results are summarized as follows: An appreciable effect of pH change of leaf extract by ${SO}_2$ fumigation was observed in barley leaves (pH 6.10 to 5.18), but only a small change occurred in corn leaves (pH 5.66 to 5.50). The same pattern of pH changes was recorded when the solution of 0.2N HCl was added to leaf extract, providing lower buffering capacity of the barley leaves than corn leaves. After 2 hours of exposure to 10 ppm ${SO}_2$, the contents of ${SO}^{2-}_3$ and ${SO}^{2-}_4$ were increased in barley leaves, while only ${SO}^{2-}_4$ increased in corn leaves. After fumigation with 10ppm ${SO}_2$ for 2 hours, barley leaves showed significant decreases in activities of catalase, to 17% peroxidase, to 58%, and polyphenoloxidase, to 88%. Corn leaves showed increases in activities of peroxidase, to 136%, and polyphenoloxidase, to 128%. Absorption spectra of pigments obtained from ${SO}_2$-fumigated leaves were gradually decreased with the fumigation time increases, but the decrease was more significant in barley leaves. Fumigation with 50ppm ${SO}_2$ for 2 hours induced the greatest decomposition in carotenoid, followed by chlorophyll a and then chlorophyll b in barley leaves. The ratio of chlorophyll a/b was decreased from 4.1 to 3.6 in barley leaves, but in corn leaves it was maintained almost a constant level(4.9-4.8). The rate of decomposition of chlorophyll and carotenoid in corn leaves was very slow than those in the barley leaves. Fumigation with 50 ppm ${SO}_2$ for 2 hous, decreased the protein content of barley leaves to 59%, and that of corn leaves to 89%, and the extent of decrease in protein content was greater than that of pigments in barley and corn leaves. The rate of DCIP9dichlorophenol indophenol) photoreduction in ${SO}_2$-fumigated leaves was decreased to 18 and 67% in barley and corn leaves, respectively. However, DCIP photoreduction was considerably recovered about 32 and 92% with the addition of DPC(diphenylcarbazide) as an exogenous electron donor in barley and corn leaves, respectively.

  • PDF

UV Effect on Plant Growth

  • Kondo, Noriaki;Tou, Seiji;Takahashi, Shinya;Nakajima, Nobuyoshi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.158-161
    • /
    • 2002
  • UV-B radiation gives harmful effects on plants, such as production of several types of DNA lesions, and growth inhibition. On the other hand, plants have some protective mechanisms, including filtering effect due to accumulation of phenolic compounds in epidermal cells and reactivation of DNA lesions, which are enhanced by UV-B irradiation. We have investigated the mechanism of UV-B effects on plants using cucumber seedlings as plant materials. Cucumber plants were cultivated in an artificially lit growth chamber. Supplemental UV-B irradiation, of which intensity was almost equal to the level of natural sunlight, retarded the growth of first leaves. The growth retardation must result trom the inhibition of cell division and/or cell growth. Microscopical observation of leaf epidermis suggested that the growth retardation might be mainly caused by cell growth inhibition. The retardation was, however, restored within 2 or 3 days after the termination of UV-B irradiation. It is known that UV-B irradiation lowers the activity of photo system II (PS II). In the present experimental conditions, however, UV-B irradiation has little effect on PS II activity as estimated by chlorophyll fluorescence. The stomatal conductance, a major factor determining photosynthetic rate, of first leaves increased during the growth. The increase of stomatal conductance was suppressed by UV-B irradiation and restored by termination of the irradiation. It has not been clear, however, what mechanisms are involved in the suppression of increase of stomatal conductance.

  • PDF

대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석 (Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

Anabaena의 광합성 전자전달 활성에 미치는 Simazine의 억제효과 (Inhibitory Effect of Simazine on Photosynthetic Electron Transport Activity in Anabaena inequalis)

  • 권벽동
    • Journal of Plant Biology
    • /
    • 제31권3호
    • /
    • pp.217-226
    • /
    • 1988
  • Effects of simazine [2-chloro-4,6-bis(methylamino)-s-triazine] on the photochemical reactions of isolaed spinach chloroplasts and crude thylakoids of Anabaena inequalis UTEX B-381 were compared. Simazine inhibited photosynthetic O2 evolution and increased the chlorophyll fluorescence in whole cells of Anabaena. The electron transfer from diphenylcarbazide to 2,6-dichlorophenolindophenol was inhibited by simazine treatment in spinach chloroplasts, but not in crude thylakoids of Anabaena. In spinach chloroplasts, the chlorophyll fluorescence was increased by simazine treatment in the presence of diphenylcarbazide and ferricyanide, but not in the presence of diphenylcarbazide and silicomolybdate. In crude thylakoids of Anabaena, simazine treatment did not increase the chlorophyll fluorescence in the presence of either diphenylcarbazide and silicomolybdate, or diphenylcarbazide and ferricyanide. There results suggest that the inhibitory site of simazine on photosynthetic electron transport chain of anabaena is different from that of spinach chloroplasts. And there may be a possiblity that the inhibition site of simazine in Anabaena lies on the donor side of photosystem II, before the site of electron donation by diphenylcarbazide.

  • PDF