• Title/Summary/Keyword: Photosynthetic pigments

Search Result 83, Processing Time 0.027 seconds

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

Photosynthetic Characteristics and a Sensitive Indicator for $O_3$-exposed Platanus orientalis (오존에 노출된 버즘나무의 광합성 특성과 민감성 지표)

  • Lee Jae-Cheon;Oh Chang-Young;Han Sim-Hee;Kim Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.220-226
    • /
    • 2005
  • We investigated the effect of $O_3$ on the photosynthetic characteristics of oriental plane (Platanus orientalis L.) that is used as a side tree or ornamental tree in Korea. Two-year-old oriental plane seedlings were transplanted to pots and transferred into a closed $O_3$ chamber, Photosynthetic pigment content and photosynthetic characteristics of leaves were measured every three weeks during 100 ppb $O_3$ fumigation. There was no visible foliar injury by $O_3$ exposure and the content of photosynthetic pigments did not show significant differences between control and $O_3$-treated seedlings. But photosynthetic rate, stomatal conductance, and water use efficiency in leaves of $O_3$-treated seedlings were reduced after six weeks of ozone fumigation. In addition, reduction of carboxylation efficiency and photochemical efficiency was observed in leaves of $O_3$-treated seedlings after three weeks and six weeks. In accordance with our results, carboxylation efficiency, the most sensitive parameter to $O_3$ stress, was considered to be a suitable indicator of $O_3$ sensitivity.

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Influence of Gamma Irradiation on Greening of Mung Bean Seedlings

  • Kim, Jin-Hong;Moon, Yu-Ran;Kim, Jae-Sung;Lee, Min-Hee;Lee, Seung-Sik;Chung, Byung-Yeoup
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Ionizing radiation causes many alterations in photosynthetic machineries. However, there is no information about effects of ionizing radiation on the development of photosynthetic machineries in plants. We investigated the greening of etiolated mung bean seedlings after gamma-irradiation of 50 to 300 Gy. The irradiation inhibited seedling growth with great dependence on the radiation dose. In particular, growth of stems was more affected than that of hypocotyls. Irradiated leaves showed inhibition in growth, aberration in morphology, and yellowing in color depending on the radiation dose. Contents of photosynthetic pigments such as chlorophylls and carotenoids were significantly decreased in the irradiated leaves. The apparent electron transport rate for photosynthesis, ETR, was similarly changed depending on the radiation dose. However, the maximal photochemical efficiency of Photosystem II (PSII), Fv/Fm, was little affected by the irradiation. Moreover, the 50-Gy seedlings maintained the control level of light saturating for photosynthesis and showed slightly higher Fv/Fm values in spite of significant decreases in the photosynthetic pigment content and ETR. These results suggest that the inhibition of the overall photosynthetic capacity couldn’t be causally relatqaed with the repression in the initial development of irradiated seedlings and that the overall photosynthetic machineries can develop and work to some extent as a concerted system for photosynthesis even after exposure to acute doses of ionizing radiation.

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong;Shuai Che;Congying Xie;Lan Wu;Xinyu Zhang;Lin Tian;Chan Liu;Hongbo Li;Guoying Du
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2023
  • Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

Diversity and Function of Retinal-binding Protein in Photosynthetic Microbes

  • Jung, Kwang-Hwan
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.64-66
    • /
    • 2005
  • Photosynthetic microbes possess a wealth of photoactive proteins including chlorophyll-based pigments, phototropin-related blue light receptors, phytochromes, and cryptochromes. Surprisingly, recent genome sequencing projects discovered additional photoactive proteins, retinal-based rhodopsins, in cyanobacterial and algal genera. Most of these newly found rhodopsin genes and retinal synthase have not been expressed and their functions are unknown. Analysis of the Anabaena and Chlamyrhodopsin with retinal synthase revealed that they have sensory functions, which, based on our work with haloarchaeal rhodopsins, may use a variety of signaling mechanisms. Anabaena rhodopsin is believed to be sensory, shown to interact with a soluble transducer and the putative function is either chromatic adaptation or circadian rhythm. Chlamydomonas rhodopsins are involved in phototaxis and photophobic responses based on electrical measurements by RNAi experiment. In order to analyze the protein, we developed a sensory rhodopsin expression system in E. coli. The opsin in E. coil bound endogenous all-trans retinal to form a pigment and can be observed on the plate. Using this system we could identify retinal synthase in Anabaena PCC 7120. We conclude that Anabaena D475 dioxygenase functions as a retinal synthase to the Anabaena rhodopsin in the cell.

  • PDF

Regulation of Growth and Metabolic Activities of Chlorella fusca by Release Products of Some Aquatic Fungi (수생균의 분비물질에 의한 Chlorella fusca의 성장 및 대사조절)

  • Hassan, S.K.M.;Fadl-Allah, E.M.;Kobbia, I.A.;Shoulkamy, M.A.
    • The Korean Journal of Mycology
    • /
    • v.18 no.4
    • /
    • pp.181-190
    • /
    • 1990
  • The growth and biochemical activities of Chlorella fusca were studied in the presence of different concentrations of either filtrates or mycelial mats of Saprolegnia ferax and Pythium graminicola. Low concentrations of both fungal filtrates exerted increase in total count, dry weight and in the biosynthesis of photosynthetic pigments, carbohydrates and nitrogen content. High concentrations showed inhibitory effect on both growth and biochemical activities of Chlorella fusca. Supplementation with different concentrations of dry mycelial mats of either fungi the culture of Chlorella showed elevation in biomass, dry weight, and biosynthesis of carbohydrates and nitrogen content especially at low concentrations. The contents of photosynthetic pigment were inhibited only at low concentrations. Neither the culture filtrate of Pythium nor Saprolegnia had cellulolytic activity, although polygalacturonase enzymes were detected, whereas chloroform-extract of both fungal filtrates showed blue spots under long wave light (366 nm).

  • PDF

The Effect of Substrate on Ecophysiological Characteristics of Green Macroalga Ulva pertusa Kjellman (Chlorophyta) (구멍갈파래(Ulva pertusa Kjellman)의 생태생리에 대한 생육기질의 효과)

  • Choi, Tae-Seob;Kim, Kwang-Young
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • Seashore joining with land and sea, which is typical habitat for marine macroalgae, is classified two types of shore as soft- and hard-bottom shore according to topographical (geological) and ecological features. We compared two of Ulva pertusa Kjellman from two contrasting habitats, sandy (soft-bottom, Haenam) and rocky shore (hard-bottom, Hadong) in terms of chlorophyll-a fluorescence and its parameters, and various photosynthetic pigment and nutrient content in the tissue of those. Both of habitats were different in the light environment such as light attenuation coefficient and even in nutrient concentration of ambient seawater. Electron transport rate (ETR) of Ulva from sandy shore was higher than from rocky shore. The range of photosynthetic pigment content in the tissue of U. pertusa was significantly much more in from sandy shore, and also nitrogen and phosphorus content were significantly higher except for carbon content. However, there were no significant differences in the ratio of among photosynthetic pigments, and N:P ratio was similar between each other, even though significantly different. Our result implied on the reason of why most of green tides in the worldwide concentrated and frequently occurred at sites with sandy, muddy and silty bottoms, being classified as soft-bottom shore.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.

Characterization of MABIK Microalgae with Biotechnological Potentials

  • Jo, Seung-Woo;Kang, Nam Seon;Lee, Jung A;Kim, Eun Song;Kim, Kyeong Mi;Yoon, Moongeun;Hong, Ji Won;Yoon, Ho-Sung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.40-49
    • /
    • 2020
  • This article emphasized the physiological characteristics of the selected marine microalgal strains obtained from the culture collection of the National Marine Biodiversity Institute of Korea (MABIK). Therefore, in this study, 13 different marine microalgal strains belonging to the phylum Chlorophyta were analyzed for the composition of fatty acids, elements, photosynthetic pigments, and monosaccharides, as well as the lipid and protein contents. The results presented that the primary fatty acids were palmitic (C16:0), palmitoleic (C16:1 n-7), stearic (C18:0), oleic (C18:1 n-9), linoleic (C18:2 n-6), and α-linolenic (ALA, C18:3 n-3) acid in the evaluated microalgae. The lipid contents of heterotrophically grown strains ranged from 15.1% to 20.4%. The calorific values of the strains were between 17.4 MJ kg-1 and 21.3 MJ kg-1. The major monosaccharides were galactose, glucose, and mannose, while the primary photosynthetic pigments were chlorophyll-a (Chla), chlorophyll-b (Chlb), and lutein, respectively. Based on the results, the microalgal strains showed high potentials in the use of microalgae-based technologies to produce biochemicals, food, and renewable fuels as they are rich in sustainable sources of high-value bio-compounds, such as antioxidants, carbohydrates, and fatty acids.