• 제목/요약/키워드: Photosynthetic pathway

검색결과 32건 처리시간 0.023초

Plastochron 에 의한 Amaranthus retroflexus 와 Chenopodium album 의 잎의 성장 해석 2. 잎의 경쟁적 발달 (The Development of Leaf in Amaranthus retroflexus and Chenopodium album Represented by the Plastochron)

  • Park, Bong-Kyu;Joung-Hee Kim
    • The Korean Journal of Ecology
    • /
    • 제8권3호
    • /
    • pp.127-132
    • /
    • 1985
  • In this study, the competitive development of leaf in Amaranthus and Chenopodium were invesitgated by the complemented plastochron index. The value of PI for Amaranthus was not varied with competional ratios, while for Chenopodium it was varied. Namely in Chenopodium, the plastochron 1 was increased as competitional combinations, the plastochron 2 was decreased. These results indicated Amaranthus had advantage in competition over Chenopodium. It is surmised that these results were exhibited differences in photosynthetic pathway between Amaranthus (C4 plant) and Chenopodium (C3 plant). The linear patterns were clearly demonstrated by the differences in leaf arrangement between Amaranthus (alternate type) and Chenopodium (opposite type). From these resultss, use of plastochron seems to a useful means of evaluating plat response to various environments.

  • PDF

Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application

  • Jin, Eon-Seon;Polle, Juergen E.W.;Lee, Hong-Kum;Hyun, Sang-Min;Chang, Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.165-174
    • /
    • 2003
  • Xanthophylls are oxygenated carotenoids that serve a variety of functions in photosynthetic organisms and are essential for survival of the organism. Within the last decade, major nor advances have been made in the elucidation of the molecular genetics and biochemistry of the xanthophyll biosynthesis pathway. Microalgae, yeast, or other microorganisms produce some of the xanthophylls that are being commercially used due to their own color and antioxidant properties. Currently, only a few microalgae are being considered or already being exploitd for the production of high-value xanthophylls. However, new developments in molecular biology have important implications for the commercialization of microalgae, and make the genetic manipulation of the xanthophyll content of microalgae mure attractive for biotechnological purposes. Accordingly, the current review summarizes the general properties of xanthophylls in microalgae and the recent developments in the biotechnological production of xanthophylls.

Metabolic engineering of Lilium ${\times}$ formolongi using multiple genes of the carotenoid biosynthesis pathway

  • Azadi, Pejman;Otang, Ntui Valentaine;Chin, Dong Poh;Nakamura, Ikuo;Fujisawa, Masaki;Harada, Hisashi;Misawa, Norihiko;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.269-280
    • /
    • 2010
  • Lilium ${\times}$ formolongi was genetically engineered by Agrobacterium-mediated transformation with the plasmid pCrtZW-N8idi-crtEBIY, which contains seven enzyme genes under the regulation of the CaMV 35S promoter. In the transformants, ketocarotenoids were detected in both calli and leaves, which showed a strong orange color. In transgenic calli, the total amount of carotenoids [133.3 ${\mu}g/g$ fresh weight (FW)] was 26.1-fold higher than in wild-type calli. The chlorophyll content and photosynthetic efficiency in transgenic orange plantlets were significantly lowered; however, after several months of subculture, they had turned into plantlets with green leaves that showed significant increases in chlorophyll and photosynthetic efficiency. The total carotenoid contents in leaves of transgenic orange and green plantlets were quantified at 102.9 and 135.2 ${\mu}g/g$ FW, respectively, corresponding to 5.6- and 7.4-fold increases over the levels in the wild-type. Ketocarotenoids such as echinenone, canthaxanthin, 3'-hydroxyechinenone, 3-hydroxyechinenone, and astaxanthin were detected in both transgenic calli and orange leaves. A significant change in the type and composition of ketocarotenoids was observed during the transition from orange transgenic plantlets to green plantlets. Although 3'-hydroxyechinenone, 3-hydroxyechinenone, astaxanthin, and adonirubin were absent, and echinenone and canthaxanthin were present at lower levels, interestingly, the upregulation of carotenoid biosynthesis led to an increase in the total carotenoid concentration (+31.4%) in leaves of the transgenic green plantlets.

Metsulfuron-methyl 처리에 의한 옥수수의 Anthocyanin 축적 생리에 관한 연구 (Physiology of Anthocyanin Accumulation in Corn Leaves Treated with Metsulfuron-methyl)

  • 박은양;김진석;조광연;변종영
    • 한국잡초학회지
    • /
    • 제18권3호
    • /
    • pp.246-256
    • /
    • 1998
  • Metsulfuron-methyl 처리시 옥수수에 발현되는 자색화의 원인을 알아보기 위하여 제반실험을 수행하였다. Metsulfuron-methyl 처리시 농도와 시간에 의존하여 당과 anthocyanin의 함량이 증가되었고, 증가된 anthocyanin은 ILE+VAL이나 DCMU 처리에 의해서 경감되었다. 당을 외부로부터 공급하였을 때 당 농도에 의존하여 anthocyanin 함량이 증가되었고, 당형성이 제한되어 있는 백화조직에서는 metsulfuron-methyl 처리로 anthocyanin 생성이 증가되지 않았다. 그리고 metsulfuron-methyl은 광합성 자체를 억제하지 않았다. Metsulfuron-methyl에 의한 anthocyanin 축적을 구조 유전자 변이주 모두에서는 관찰할 수 없었고, 조절유전자 변이주 중에서는 R-r, r-r에서만 anthocyanin축적을 관찰할 수 있었다. 이들의 제반 결과는 metsulfuron-methyl이 처리되면 광합성 산물인 당이 축적되고, 이는 anthocyanin 생합성 과정에 관련된 유전자를 자극함으로써 anthocyanin 생합성과정을 활성화시키며 이로 인해 옥수수가 자색화됨을 시사해 준다.

  • PDF

Salicylic acid가 닭의장풀의 광합성에 미치는 영향 (The Effect of Salicylic Acid (SA) on the Photosynthetic Activity in Commelina communis L.)

  • 이준상
    • 환경생물
    • /
    • 제17권3호
    • /
    • pp.359-364
    • /
    • 1999
  • 살리실릭산(SA)이 닭의장풀의 잎의 생장, 엽록소 함량, 광합성능, 기공전도도에 미치는 영향을 조사하였다. Hoagland 용액에 SA를 처리한 후 3주 동안 배양한 닭의장풀은 잎의 길이, 너비, 면적이 크게 감소하였다. 1 mM SA를 1, 2주 처리 시에 엽면적 생장이 약 10%억제되었으며, 3주 째에는 22%억제하였다. SA는 또한 2주 째는 47%그리고 3주 째는 53%엽록소 함량을 감소시켰다. SA를 처리한 샘플의 엽록소 a/b는 3주 째에 약 3으로 크게 증가하였다. SA를 분리 엽록체에 직접 처리하여 전자전달활성을 직접 측정하였다. PSII+PSI, PSII 그리고 PSI활성에 SA가 영향을 주지 않았다. 이는 SA가 직접 광합성 기작에는 영향을 주지 않는 다는 것을 나타낸다. 그러나, SA를 오랜 기간 처리하면 광합성의 감소는 매우 뚜렷하게 관찰되었다. Hoagland 용액에 SA를 처리한 후 3주 동안 배양한 닭의장풀에 다양한 빛 광도(100~1000$\mu$mo1 m­$^2$$^1$)를 조사하면 약 23~65%의 광합성능의 저하가 나타났다. 기공전도도가 유사한 반응을 보여주었다. SA처리구의 기공은 거의 닫혔다. 여러 광조건에서 기공전도도가 같다는 것은 SA가 기공의 조절 기능을 상실하게 한 것으로 보여진다. 이들 결과들로부터 광합성능에 대한 SA의 효과는 SA자체에 의한 것이 아니라 간접적인 대사 경로를 통해 매개되는 것으로 추측된다.

  • PDF

인산감수성(燐酸感受性)이 다른 대두엽(大豆葉)의 광합성(光合成) 호흡(呼吸) 평형(平衡)과 유리(遊離) 아미노산에 대(對)한 질소원(窒素源)의 영향(影響) (Effects of Nitrogen Sources on PRE-point and Free amino acids in Soybean Leaves different In Phosphorus Sensitivity)

  • 챨스 A. 스뚜디;박훈
    • 한국토양비료학회지
    • /
    • 제6권4호
    • /
    • pp.239-244
    • /
    • 1973
  • 대두(大豆)의 안산(燐酸) 감수성(感受性)과 관련(關聯) 엽(葉)의 광합성(光合性)-호흡평형점(呼吸平衡點)과 유리(遊離) 아미노산에 대(對)한 질소원(窒素源)의 영향(影響)을 조사(調査)하였다. 유리(遊離) 아미노산 함량(含量)은 암모니움 태(態)에서 최고(最高)였고 요소태(尿素態)에서 최저(最低)였다. glycine, serine, alanine과 특히 histidine이 암모니움태(態)에서 높았다. aspartic acid 는 초산태(硝酸態)에서 높았다. 광합성(光合性)-호흡평형점(呼吸平衡點)은 감수성(感受性) 품종(品種)에서 높고 초산태(硝酸態)에서 보다 암모니움태(態)에서 높았다. 감수성(感受性) 품종(品種)에서 과잉흡수(過剩吸收)된 암모니움을 광합성(光合性) 회로(回路)에서 중간대사물(中間代謝物)을 탈취(脫取)하여 조해(阻害)하고 오탄당(五炭糖) 회로(回路)와 광호흡회로(光呼吸回路)가 활발(活發)해지며 인산감수성품종(燐酸感受性品種)에서는 이러한 현상이 더욱 조장(助長)되는 것으로 나타났다.

  • PDF

Role of plastidic glucose transporter in source metabolism of Arabidopsis

  • Lee, Youn-Hyung;Hong, Soon-Won;Lee, Jang-Wook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.9-21
    • /
    • 2005
  • To study the biochemical and physiological role of the plastidic glucose transporter (pGlcT) in carbohydrate metabolism, we characterized transgenic plants with mutations in the pGlcT gene (GT), gt-1 and gt-2, as well double mutants of GT and the maltose transporter (MEX1) and GT and the triose phosphate/phosphate translocator (TPT), GT and the cytosolic fructose-1,6-bisphosphatase gene (cFBP), and MEX1 and TPT, gt-1/mex2, gt-1/tpt-2, gt-1/cfbp-1, mex1-1/tpt-2, respectively. Compared to the wild type, all mutants except the gt-1/cfbp-1 mutant lines displayed higher starch accumulation and higher levels of maltose. Starch accumulation is due to a decrease in starch turnover, leading to an imbalance between the rates of synthesis and degradation. Sucrose levels of gt alleles were higher than those in wild-type plants during the light period, suggesting possible nightly supplementation via the maltose transport pathway to maintain proper carbohydrate partitioning in the plant leaves. The gt plants displayed less growth retardation than mex1-1 mutant and gt-1/mex2 double mutant displayed accumulativesevere growth retardation as compared to individual gt-1 and mex1-1 mutants, implying that the maltose transporter-mediated pathway is a major route for carbohydrate partitioning at night. The gt-1/tpt-2, mex1-1/tpt-2 and gt-1/cfbp-1 double mutants had retarded growth and low chlorophyll content to differing degrees, indicating that photosynthetic capacity had diminished. Interestingly, the gt-1/tpt-2 line displayed a glucose-insensitive phenotype and higher germination rates than wild type, suggesting its involvement not only in carbon partitioning, but also in the sugar signaling network of the pGlcT and TPT.

  • PDF

Altered Invertase expression induced by BCTV on Arabidopsis

  • Kim, Soyeon;Park, Eunsuk;Lee, Tack-Kyun;Lee, Sukchan
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.74.2-74
    • /
    • 2003
  • Arabidopsis infected with beet curly top virus (BCTV) has the systemic symptoms like stunting of Plant growth, curling of leaves and shoot tips, and callus induction. The regulation of sucrose metabolism by BCTV infection is essential for obtaining the energy source in the process of virus replication and symptom development. Sucrose metabolism-associated gene expression and biochemical enzyme activity were analyzed with the rossette leaves and inflorescencestems of BCTV infected Arabidopsis by the time course of 1, 7, 14, 21 day postinoculation. The expression of invertase and sucrose synthase genes ( encoding sucrose-cleaving enzymes )was increased and reversely the level of Atkin10a ( sucrose non-fermenting gene ) was decreased, resulting by semi-quantitative reverse transcription polymerase chain reaction. The biochemical analysis of invertase and sucrose synthase activity was performed. The activity of neutral invertase in the inflorescence stems was elevated remarkably. The photosynthetic response in the source of sucrose metabolism was consistent with the down-regulation of ribulose 1,5 bisphosphate carboxylase gene, and lower activity than mock-inoculated plants. The levels of genes pertaining to the cell cycle, hormone, and biotic stress-related pathway showed an increase or a decrease dependent on viral symptoms. Therefore, sucrose sensing by BCTV infection can regulate the expression of sucrose metabolism-related key enzymes such as invertase and Atkin10a, and these gene products might influence to symptom development.

  • PDF

토마토 식물에 있어서 광합성이 유존유동성의 에틸렌 생성에 미치는 영향 (Effect of Photosynthesis on Ozone-Induced Ethylent Evolution from Tomato Plants)

  • 배공영
    • 한국대기환경학회지
    • /
    • 제12권3호
    • /
    • pp.307-314
    • /
    • 1996
  • The rate of evolution of ethylent by tomato plants was rapidly increased by ozone fumigation. In the present study, the mechanism of ethylent evolution by ozone was investigated in experiments with aminoethoxyvinylglycine (AVG) and tiron, which inhibit the formation of ethylene and peroxidation of lipids, respectively. Pretreatment with AVG significantly inhibited the ozone-induced ethylent evolution, but the treatment of plants with tiron did not inhibit. These results indicate that the induction of the evolution of ethylene by ozone involves the pathway via aminocyclopropane-1-carboxylate (ACC), while not released as a result of the peroxidation of lipids. Ozone-induced ethylent evolution was greater in dar- than light-incubated, intact tomato plants. The difference between dark- and light-ethylene evolution was examined with diuron, an inhibitor of photosynthetic electron transport. The inhibitor treatment promoted ethylent evolution. These results suggest that ethylent retention and metabolism in plants were regulated by internal $CO_2$ levels which, in turn, were controlled in large part by photosynthesis. Thus, ethylene was retained in illuminated leaf tissue under low intenal $CO_2$ concentration which may develop in a sealed container without exogenously supplied $CO_2$.

  • PDF

Isolation and structure elucidation of antifungal compounds from the antarctic lichens, Stereocaulon alpinum and Sphaerophorus globosus

  • Kim, Young-Shin;Lim, Chi-Hwan
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.183-191
    • /
    • 2020
  • Lichens are composite organisms consisting of a symbiotic association of a fungus with a photosynthetic partner (the photobiont or phycobiont), usually either a green alga or cyanobacterium. According to more recent studies, the biological activities of lichens and lichen substances include an antibiotic activity, antitumor and antimutagenic activity against human immunodeficiency virus (HIV), allergenic activity, plant growth inhibitory activity, and enzyme inhibitory activity. This study screened lichen extracts with a potent in vitro antifungal activity against plant diseases caused by phytopathogenic fungi. The compounds were isolated from Stereocaulon alpinum and Sphaerophorus globosus, and their chemical structures were identified as methyl hematommate, methyl β-orsellinate, 5-hydroxyferulic acid, sphaerophorin, and 2-heptyl-4,6-dimethoxybenzoic acid by electron ionization mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) spectral analyses. In vitro disease control against Alternaria mali, Cochliobolus miyabeanus, Colletotrium gloeosporioides, and Verticillum dahliae was evaluated. And among the five compounds, only methyl hematommate was effective against A. mali, C. miyabeanus, and C. gloeosporioides. The compounds were isolated from these lichens, which have a similar biosynthetic pathway, respectively. This is the first report of these compounds being isolated from these lichens.