• Title/Summary/Keyword: Photosynthetic bacteria

Search Result 120, Processing Time 0.024 seconds

Studies on Hydrogen Evolution by Photosynthetic Bacteria(Part 1) Isolation and Identification of the Photosynthetic Bacteria (광합성세균에 의한 수소 생산에 관한 연구 (제 1보) 광합성균의 분리 및 동정)

  • Bae, Moo;Yang, Sung-Woo;Ko, Young-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 1982
  • Many microorganisms capable of hydrogen photoproduction were isolated from samples of mud fiats of paddy field collected in Seongnam area near Seoul. Among the 63 isolants, a strain K-13 was selected for the capability of hydrogen evolution. As the results of examinations in physiological, morphological and cultural characteristics, the strain K-13 was identified as Rhodopseudomonas gelatinosa.

  • PDF

Hydrogen Evolution by Photosynthetic Bacteria Rhodobacter sphaeroides KS56 (광합성 세균 Rhodobacter sphaeroidea KS56에 의한 수소 생성)

  • 이은숙;권애란
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.3
    • /
    • pp.325-329
    • /
    • 1997
  • The optimum temperature and pH for growth and hydrogen evolution of the organism were observed at 30-35$^{\circ}C$, and around pH 7.0, respectively. The efficiency of various sugars and organic acids on hydrogen evolution as electron donors by the organism was examined. Among them, higher rates of hydrogen evolution were observed with sugars such as glucose or fructose and organic acids such as alate or pyruvate. From the result, it was evident that Rhodobacter sphaeroides KS56 had a great capacity of utilizing various kinds of reduced carbon compounds as electron donors.

  • PDF

Wastewater Treatment and Biogas Production by Hydrogen Fermentation(I): Optimum Condition for Hydrogen Production (수소 발효에 의한 폐수처리 및 바이오가스 생산(I): 최적 수소 생산 조건)

  • 선용호;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.351-361
    • /
    • 1991
  • This study is on the investigation of hydrogen production and substrate removal by photosynthetic bacteria. After using of Rhodospillum rubrum KS-301 and IFO 3986, which are photosynthetic bacteria as strains, R. rubrum KS-301 was turned out a better strain. And result of experiment in which glucose and sodium lactate, components of wastewater, were used limiting substrates, showed that the productivity of hydrogen was indifferent with the kind of substrates. In batch experiments using free cells and immobilized whole cells, the decrease in hydrogen productivity was observed in the latter case. From the results of these experiments, specific growth rate of cells, specific utilization rate of glucose, and specific production rate of hydrogen were calculated. And each rate was expressed in the form of Monod equation of which parameters were estimated. Also the optimum condition of hydrogen production for free cells was $30^{\circ}C$, pH 7, and 12,000 Lux, and the optimum immobilized condition was as follows: initial immobilized cell concentration 1.0g/L, sodium alginate concentration 2% and light intensity 12,000 Lux.

  • PDF

Effect on Growth of Yeasts and Photosynthetic Bacteria by Photochemical Product of Harmaline with N-Methylmaleimide (Harmaline과 N-Methylrnaleimide의 광화학반응 생성물이 효모 및 광합성 세균의 성장에 미치는 영향)

  • Ham, Heui-Suk;Kang, Dae-Gil;Choi, Won-Ki
    • The Korean Journal of Mycology
    • /
    • v.17 no.4
    • /
    • pp.202-208
    • /
    • 1989
  • The photochemical reaction of harmaline and N-methylmaleimide has been investigated by spectroscopic methods. A photoproduct was isolated from the irradiation mixture of harmaline and N-methylmaleimide. Spectroscopic results suggested that the amine group of harmaline was added photochemically to the double C=C bond of N-methylmaleimide. This synthesized harmaline derivative has a biological toxicity, because it inhibits the growth of some yeasts and photosynthetic bacteria.

  • PDF

Biofuel Production by Immobilized Living Cells - Hydrogen Production by Photosynthetic Bacteria - (고정화 미생물에 의한 에너지 생산 - 광합성 박테리아에 의한 수소 생산 -)

  • 조영일;선용호
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.303-309
    • /
    • 1985
  • Continuous production of hydrogen by Ca alginate-immobilized photosynthetic bacteria was studied in a packed-bed bioreactor. The dilution rate and input concentration of carbonaces substrate were selected as operating parameters. To choose the strain for immobilization, hydrogen productivities of Rhodopseudomonas caposulata 10006 and Rhodospirillum rubrum KS-301 were compared through preliminary batch cultures of their free cells: the former was found to show better hydrogen productivity in spite of its lower specific growth rate. For the continuous production of hydrogen by immobilized R capsulata, the optimum dilution rate was about 0.84 h$^{-1}$ . The Immobilized tells gave better hydrogen yield and conversion efficiency than free ones. And a kinetic parameter K'$_{m}$ was determined for the packed-bed bioreactor, being practically constant for a specific range of dilution rates.s.

  • PDF

The Study on Nitrogen and Phosphorus Removal Using Photosynthetic Bacteria in SBR Process (광합성 미생물을 이용한 SBR공법에서의 질소, 인 동시제거에 관한 연구)

  • Kim Yung-Ho;Kim Sung-Chul;Lee Kwang-Hyun;Joo Hyun-Jong
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.12-20
    • /
    • 2005
  • Most of sewage treatment plants in Korea is operated for the removal of organic material. Because of low C/N ratio of domestic wastewater it is very difficult to remove nitrogen and phosphorus from wastewater. Therefore C/N ratio is key factor for the removed of nitrogen and phosphorus. PSB(photosynthetic bacteria) can remove the nutrient materials, so this study is focused on PSB characterization of nutrient removal. PSB is possible to remove nitrogen, phosphorus in anaerobic and aerobic condition. This study try to find out condition of the PSB in SBR reactor, Batch reactor. It consists of three Mode. Mode 1, 2 is to apply activated sludge process and Mode 3 is that seeded PSB in the activated sludge process. As a result of SBR process, Mode 1, 2 which was activated sludge Process showed $79\~90\%,\;66\~90\%$ of SCODcr, $94.67\~95.89\%,\;95.76\~98.56\%$ of TKN, and Mode 3 has $84\~92\%$ of SCODcr, $95.39\~99.52\%$ of TKN removal efficiency, respectively. When comparison with Mode 1, 2 and 3, most of nitrogen and phosphorus is removed at the anaerobic condition in Mode 3. but Mode 1, 2 has just revealed activated sludge process characterization. It would because of characterization of PSB.

Isolation of Photosynthetic Bacteria and the Cell Growth on Soybean-Curd Whey Wastes (광합성 세균의 분리 동정 및 두부 유청 폐수에서의 배양조건 검토)

  • Ji, Geun-Eog;Lee, Ke-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.142-147
    • /
    • 1993
  • For the purpose of fixing solar energy and utilizing water wastes from food industries for SCP(single cell protein), 170 strains of photosynthetic bacteria were isolated from 56 samples. Among 170 strains, B-Ps-106 strain was selected as the most suitable strain and identified as a variant or a relation of Rhodopseudomonas sphaeroides and its growth was better under anaerobic light condition than aerobic condition. The optimum conditions of the cell growth of B-Ps-106 were investigated on soybean-curd whey media. The optimum pH for cell growth was $8.5{\sim}9.0$. The optimum temperature was $30^{\circ}C$ and the optimum light density was above $0.72\;cal/cm^2/min$. The most favorable concentration of $K_2HPO_4\;and\;(NH_4)_2SO_4$ was both 0.9 g/l when added to soybean-curd whey media.

  • PDF

Biological Hydrogen Production Processes (생물학적 수소생산 공정)

  • Shin, Jong-Hwan;Park, Tai Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • Biological hydrogen production processes are more environment-friendly and less energy intensive than thermochemical and electrochemical processes. The biological process can be divided into two categories: photosynthetic hydrogen production and hydrogen production by dark fermentation. Photosynthetic process produces hydrogen mainly from water and reduces $CO_2$ simultaneously. Dark fermentation is a dark and anaerobic process that produces hydrogen by fermentative bacteria from organic carbon. The article presents a survey of biological hydrogen production processes.