• Title/Summary/Keyword: Photorhabdus sp.

Search Result 3, Processing Time 0.024 seconds

Growth Optimization of Photorhabdus luminescens Isolated from Entomopathogenic Nematode Heterorhabditis bacteriophora (병원성 선충 Heterorhabditis bacteriophora에서 분리된 공생 박테리아 Photorhabdus luminescens의 생장조건)

  • Yoo, Sun Kyun;Randy Gaugler;Christopher W. Brey
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2001
  • The yield of infective juveniles of Heterorhabditis bacteriophora (Tf strain) in vitro monoxenic liquid culture was improved significantly as the amount of symbiont biomass, Photorhabdus sp. strain Tf, increased. To investigate the influence of abiotic factors on the growth and biomass production of Photorhabdus sp. strain Tf, triplicate flask cu1tmes were performed. The optinal temperature and medium pH for the growth of Photorhahdus sp. strain Tf were 30$^{\circ}$C and between pH 5.5-7.3, respectively. Aeration also improved greatly growth and yield of biomass of Photorhabdus sp. strain Tf. Photorhabdus sp. strain Tf in batch fermentation showed growth-associated pattem in terms of pigment production, and the pH of culture medium rose steadily until growth stopped dUling the fermentation. Both pigment production and culture pH rise would be useful parameters indicating a reliable growth of Photorhabdus sp. strain Tf.

  • PDF

Immunosuppressive Activity of Cultured Broth of Entompathogenic Bacteria on the Beet Armyworm, Spodoptera exigua, and Their Mixture Effects with Bt Biopesticide on Insecticidal Pathogencity (파밤나방(Spodoptera exigua)에 대한 곤충병원세균류 배양액의 곤충면역억제활성 및 비티 생물농약과 혼합효과)

  • Kim, Jea-Min;Nalini, Madanagopal;Kim, Yong-Gyun
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.184-191
    • /
    • 2008
  • Entomopathogenic bacteria (Xenorhabdus nematophila, X. sp. and Photorhabdus temperata subsp. temperata) isolated from entomopathogenic nematodes express potent insecticidal activity in insect hemocoel. They are also known to suppress insect immune mediation by inhibiting phospholipase $A_2$, leading to host immunosuppression. This study analyzed effects of their cultured broths on inhibiting insect immunosuppression. For this, we removed all bacterial cells using $0.2\;{\mu}m$ pore sized membrane from the bacteria-cultured broth. All three sterilized cultured media, in dose-dependent manners, significantly inhibited hemocyte-spreading behavior of 5th instar larvae of Spodoptera exigua. However, they showed differential inhibitory activities among different bacterial species, in which X. nematophila showed the most potent inhibitory activity. This immunosuppressive effect was applied to increase the pathogenicity of Bacillus thuringiensis (Bt). All three bacterial cultured broths including bacterial cells significantly potentiated Bt pathogenicity against young S. exigua larvae when each of them was orally administered in a mixture of low dose of Bt. Finally, we tested the effect of oral administration of the cultured media containing the immunosuppressive compound(s) secreted by the bacteria. The membrane-sterilized cultured broths were mixed with the low dose of Bt and then orally administered to the young S. exigua. Only the cultured medium of X. nematophila showed increase of Bt pathogenicity. These results indicated that the; cultured media of the three bacteria possessed immunosuppressive factor(s), which may act to potentiate Bt toxicity to young S. exigua larvae.

Feeding Preference of Foraging Ants on Insect Cadavers Killed by Entomopathogenic Nematode and Symbiotic Bacteria in Golf Courses (골프장에서 곤충병원성 선충과 공생세균 처리에 대한 개미의 섭식 선호성)

  • Lee Dong Woon;Lyu Dong Pyeo;Choo Ho Yul;Kim Hyeong Hwan;Kweon Tae Woong;Oh Byung Seog
    • Korean journal of applied entomology
    • /
    • v.44 no.1 s.138
    • /
    • pp.21-30
    • /
    • 2005
  • Feeding behavior of foraging ants including visiting numbers, species, and preference on insect cadavers killed by entomopathogenic nematodes <(Heterorhabditis sp. KCTC 0991BP (He) and Steinernema carpocapsae KCTC 0981BP (Sc)> and their symbiotic bacteria was investigated in Dongrae Benest Golf Club, Anyang Benest Golf Club, Gapyung Benest Golf Club and Ulsan Golf Club. The number of ants, kinds and numbers of cadavers taken away by ants were different depending on killing method, golf club and site within the golf courses (fairway and rough). The feeding preference of ants was the lowest on cadavers killed by He. At Dongrae Benest Golf Club Lasius japonicu ($75{\pm}5\%$) and Monomorium floricola ($10\%$) took away cadavers only at the rough. The visiting rate of ants was $85{\pm}6\%$ at the rough, but none at the fairway by 16 hours. The taken rate of cadavers by ants was the lowest on He-killed cadavers representing $16.7\%$ compared with $40.0\%$ on Sc-killed cadavers, $53.3\%$ on fenitrithion-killed cadavers, and $56.7\%$ on natural dead cadavers by 12 hours. At the rough of hole 6 in Anyang Benest Golf Club, Tetramorium tsushimae ($33{\pm}12\%$), Pheidole fervida ($17{\pm}15\%$), Camponatus japonicus ($10\%$), Formica japonica ($7{\pm}6\%$), Paratrechina flavipes ($3{\pm}6\%$), and Crematogaster matsumurai ($3{\pm}6\%$) took away cadavers, but $23{\pm}15\%$ of cadavers were not visited by ants. Ants took away $40\%$ of Sc-killed cadavers, $16.7\%$ of frozen-killed cadavers, and $3.4\%$ of He-killed cadavers. The number of visiting ants was low at the hole 9 of Cherry course in Gapyung Benest Golf Club and only Tetramorium tsuhimae and Paratrechina flavipes were found from one site. The density of entomopathogenic nematodes did not influence ant visiting on cadavers, but burying affected ant visiting. Although ants took away unburied cadavers, buried cadavers were taken away at the hole 6 of Dongrae Benest Golf Club by 16 hours. Ant visiting had the same tendency on symbiotic bacterium-treated biscuit as nematode-killed cadavers. The visiting was less on biscuit inoculated by Photorhabdus sp., a symbiotic bacterium of He than on biscuit inoculated by Xenorhabdus nematophila, a symbiotic bacterium of Sc.