• Title/Summary/Keyword: Photoplethysmography

Search Result 128, Processing Time 0.027 seconds

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.

User-Adaptive Movement Noise Detection Algorithm Using Wavelet Transform (Wavelet을 이용한 사용자 적응 동잡음 판단 알고리즘)

  • Ban, Dahee;Kwon, Sungoh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1120-1129
    • /
    • 2015
  • In this paper, we propose an algorithm to detect movement noise in PPG(Photoplethysmography) measurements. Movement noise significantly deteriorate PPG signals in measurement, so that a movement noise detection algorithm is critical before using measured PPG signals for applications such as diagnosis. To detect movement noise, we apply wavelet transform to PPG signals instead of short-time Fourier transform and decide if the measured signlas include movement noise. To that end, we adaptively choose a wavelet, which is the most similar to the subject's PPG pattern. In the case when movement noise is intentionally added in the 20% and 30% of the total experiment time, our algorithm detects time-slots including movement and outperforms previous works.

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

A Comparative Study on the Optimal Model for abnormal Detection event of Heart Rate Time Series Data Based on the Correlation between PPG and ECG (PPG와 ECG의 상관 관계에 기반한 심박 시계열 데이터 이상 상황 탐지 최적 모델 비교 연구)

  • Kim, Jin-soo;Lee, Kang-yoon
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.137-142
    • /
    • 2019
  • This paper Various services exist to detect and monitor abnormal event. However, most services focus on fires and gas leaks. so It is impossible to prevent and respond to emergency situations for the elderly and severely disabled people living alone. In this study, AI model is designed and compared to detect abnormal event of heart rate signal which is considered to be the most important among various bio signals. Specifically, electrocardiogram (ECG) data is collected using Physionet's MIT-BIH Arrhythmia Database, an open medical data. The collected data is transformed in different ways. We then compare the trained AI model with the modified and ECG data.

The Motion Artifact Reduction using Periodic Moving Average Filter (주기적 이동평균필터를 이용한 동잡음 제거)

  • Lee, Jun-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.75-82
    • /
    • 2012
  • The Photoplethysmogram is a similar periodic signal that synchronized to a heartbeat. In this paper, we propose a periodic moving average filter that use similarity of Photoplethysmogram. This filtering method has the average value of each samples through separating the cycle of PPG signal. If there are some motion artifacts in continuous PPG signal, disjoin the signal based on cycle. And then, we made these signals to have same cycle by coordinating the number of sample. After arrange these cycles in 2 dimension, we put the average value of each samples from starting till now. So, we can eliminate the motion artifacts without damaged PPG signal.

A New Method for Unconstrained Pulse Arrival Time (PAT) Measurement on a Chair

  • Kim Ko-Keun;Chee Young-Joon;Lim Yong-Gyu;Choi Jin-Wook;Park Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2006
  • A new method of measuring pulse arrival time (PAT), which is usually used for the estimation of systolic blood pressure, in an unconstrained manner using a chair, is proposed. The capacitive-coupled ECG (CC-ECG) measurement system and the air cushion with balancing tubes system were used for unconstrained PAT measurement. Firstly, the correlation between the standard PAT (S-PAT) from the photoplethysmography (PPG) and the PAT measured in an unconstrained manner (U-PAT) was evaluated. It was observed that U-PAT, which is the time delay from the R-peak of ECG to the steepest decent point of air cushion pressure wave, is significantly correlated with the S-PAT. Secondly, systolic blood pressure (SBP) measured by the radial tonometer is compared to the U-PAT. The ten-beat averaged U-PAT removed respiration effects and demonstrated a high intra-subject correlation with SBP in all participants. Finally, the tonometry SBP was estimated from these U-PAT values for one participant intermittently during half a day.

A Study on Wrist Band Type Vital Sign Acquisition Device (손목형 생체신호수집 장치에 대한 연구)

  • Kim, Hee-Hoon;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.857-861
    • /
    • 2016
  • In this study, we proposed a new method that can be measure ECG (Electrocardiography) and PPG (Photoplethysmography) in realtime on the site of the wrist for check the state of health in daily life. For convenience measurement of ECG the lead I method was used on the wrist, and omit the reference junction ECG I was measured in the right hand and the left hand of the potential difference. Then the measured electrocardiogram was amplified by the differential amplifier and the signals were passed HPF, LPF, and BPF filters. For removing the PPG's noise from the Motion artifact and temperature, we apply the reflective photoelectric volume pulse wave measurement method using green LED as a light source. The circuits was designed to be able to check the waveform using higher active amplification method at weak signals. For the validation of our device, the measured signals were compared with E2-KIT on same time. The results shows that the error does not exceed the maximum one, most of the data is confirmed to be issued Peak inspection of the same number.

A Study on Personal and Lifestyle Factors that Affects Pulse Types (개체 요인 및 생활 습관 요인이 맥상에 미치는 영향)

  • Jung, Hyun-Jung;Yun, Sang-Hun;Kang, Won-Suk
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2012
  • Objectives: The aim of this study was to elucidate the relationship between pulse types measured by pulse analyzer and several factors including smoking, drinking alcohol, exercises etc. Methods: The subjects were 71 persons who were tested by oriental health examination. A self-reported questionnaire was used to gather age, smoking, drinking alcohol, exercise state and gender. The pulse types were measured by DMP 1000. The index of stress and fatigue were measured by SA 3000. We analyzed the frequency of pulse types according to gender, ages, smoking, drinking alcohol etc by chi-square test with SPSS ver. 19.0. Results: In the main pulse types, there were significant differences according to age(p<0.05) and marginal differences according to drinking alcohol(p<0.1). In the secondary pulse types, there were marginal differences according to exercise, ages. But there was no significant differences according to gender, smoking, body mass index (BMI), accelerated photoplethysmography (APG) feature, stress and fatigue. Conclusions: This study suggests that the pulse types are affected by drinking alcohol, ages, exercise.

Breathing Information Extraction Algorithm from PPG Signal for the Development of Respiratory Biofeedback App (호흡-바이오피드백 앱 개발을 위한 PPG기반의 호흡 추정 알고리즘)

  • Choi, Byunghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.794-798
    • /
    • 2018
  • There is a growing need for a care system that can continuously monitor, manage and effectively relieve stress for modern people. In recent years, mobile healthcare devices capable of measuring heart rate have become popular, and many stress monitoring techniques using heart rate variability analysis have been actively proposed and commercialized. In addition, respiratory biofeedback methods are used to provide stress relieving services in environments using mobile healthcare devices. In this case, breathing information should be measured well to assess whether the user is doing well in biofeedback training. In this study, we extracted the heart beat interval signal from the PPG and used the oscillator based notch filter based on the IIR band pass filter to track the strongest frequency in the heart beat interval signal. The respiration signal was then estimated by filtering the heart beat interval signal with this frequency as the center frequency. Experimental results showed that the number of breathing could be measured accurately when the subject was guided to take a deep breath. Also, in the timeing measurement of inspiration and expiration, a time delay of about 1 second occurred. It is expected that this will provide a respiratory biofeedback service that can assess whether or not breathing exercise are performed well.

Implemetation and Estimation of the Wearable PTT Monitoring System Using Wireless Sensor Network (무선 센서네트워크를 이용한 착용형 PTT 측정시스템의 구현 및 평가)

  • Kim, Jin-Ho;Kang, Hag-Seong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.137-140
    • /
    • 2010
  • 본 연구에서는 일상생활에서 보다 편리하게 건강모니터링을 수행하기 위해 신체에 착용 가능한 심전도 및 맥파 계측 시스템을 구현하고자 하였다. 이를 위하여 배터리로 구동 가능한 초소형의 심전도 및 맥파 측정 시스템을 구현하였으며, 계측된 생체신호의 무선전송을 위해 초저전력 무선 센서네트워크 기술을 적용한 무선 생체신호 전송시스템을 구현하였다. 무선으로 전송된 심전도 및 맥파 신호는 잡음 제거 및 심박동을 검출하기 위하여 전처리과정과 적응 가변형 문턱치를 적용하였으며, 검출된 심박동으로부터 동맥순환계의 긴장도 및 유순도의 변화를 반영하는 맥파전달시간(pulse transit time, PTT)을 계산하였다. 구현된 무선 맥파전달시간 계측시스템과 기존 상용시스템의 비교 평가를 수행함으로써 구현된 시스템의 유용성을 평가하고자 하였으며, 혈압 및 맥파전달시간의 동시계측을 통해 자세 변화에 따른 혈압의 변화 및 맥파전달시간의 변화양상을 관찰함으로써 혈압과 맥파전달시간의 관계를 추정하고자 하였다.

  • PDF