• Title/Summary/Keyword: Photoplethysmography

Search Result 128, Processing Time 0.026 seconds

A Study on the Composition of the Presentation Remote Control Analysis a Tension of Presenter (발표자의 긴장정도를 분석하는 원격제어 발표도구 제작에 관한 연구)

  • Kim, Hyeonsik;Han, Kyuhwan;Yoon, Seokbeom;Chang, Eunyoung
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.135-139
    • /
    • 2014
  • In this study, the new model of presentation remote controller in which has improved the conventional function and deteceted the level of human's tension on a real time basis is suggested and tested. Existing presentation remote controller was just used turning the pages. But new model controls presentation and check tension level on real time using the smart phone's bluetooth interface. The proposed system is comprised with the PPG (Photo-Plethysmo-Graphy) sensor, Bluetooth and Wi-Fi modules. The configured system is to process (within 150 ms) the pulse signals of the presenter and stored the data. As a result, it can check and make up for the week presentation part and used as sources for improving self-confidence. This is the result obtained from the process of capstone design irregular course for 20 weeks of a graduate-to-be in four-year college.

Design of Filter to Remove Motion Artifacts of Photoplethysmography Signal Using Adaptive Notch Filter and Fuzzy Inference system (적응 노치필터와 퍼지추론 시스템을 이용한 광용적 맥파 신호의 동잡음 제거 필터 설계)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2019
  • When PPG signal is used in mobile healthcare devices, the accuracy of the measured heartbeat decreases from the influence by the movement of the user. The reason is that the frequency band of the noise overlaps the frequency band of the PPG signal. In order to remove these same noises, the methods using frequency analysis method or application of acceleration sensor have been investigated and showed excellent performance. However, in applying these methods to low-cost healthcare devices, it is difficult to apply these methods because of much processing time and sensor's cost. In order to solve these problems, this study proposed the filter design method using an adaptive notch filter and the fuzzy inference system to extract more accurate heart rate in real time and evaluated its performance. As results, it showed better results than the other methods. Based on the results, when applying the proposed method to design the mobile healthcare device, it is possible to measure the heartbeat more accurately in real time.

Blood Pressure Estimation for Development of Wearable small Blood Pressure Monitor Fusion Algorithm Analysis (웨어러블 초소형 혈압계 개발을 위한 혈압 추정 융합 알고리즘 분석)

  • Kim, Seon-Chil;Kwon, Chan-Hoe;Park, You-rim
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.209-215
    • /
    • 2019
  • The most important personal health care in digital health care is a very important issue mainly for chronic diseases. Therefore, it is important to develop a simple wearable device for real-time health management. Existing blood pressure estimation wearable devices use PPG characteristics to analyze PTT and propose blood pressure estimation algorithms. However, the influencing factors of the algorithm such as the reproducibility of PPG, whether to apply various PTTs, and variables generated from the physical differences of the measurers are actually very complex. Therefore, in this study, the correlation between PTT, SBP, and DBP was analyzed, and it was designed to use PPG sensors for device miniaturization. The blood pressure estimation algorithm took into account differences in PPG, heart rate, and personal variables.

Analysis of the Optimal Location of Wearable Biosensor Arrays for Individual Combat System Considering Both Monitoring Accuracy and Operational Robustness (모니터링 정확도와 운용 강건성을 고려한 개인전투체계용 착용형 생체센서 어레이의 최적 위치 분석)

  • Ha, Seulki;Park, Sangheon;Lim, Hyeoncheol;Baek, Seung Ho;Kim, Do-Kyoung;Yoon, Sang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.287-297
    • /
    • 2019
  • Monitoring for the physiological state of a solider is essential to the realization of individual combat system. Despite all efforts over the last decades, there is no report to point out the optimal location of the wearable biosensors considering both monitoring accuracy and operational robustness. In response, we quantitatively measure body temperature and heartrate from 34 body parts using 2 kinds of biosensor arrays, each of which consists of a thermocouple(TC) sensor and either a photoplethysmography(PPG) sensor or an electrocardiography(ECG) sensor. The optimal location is determined by scoring each body part in terms of signal intensity, convenience in use, placement durability, and activity impedance. The measurement leads to finding the optimal location of wearable biosensor arrays. Thumb and chest are identified as best body parts for TC/PPG sensors and TC/ECG sensors, respectively. The findings will contribute to the successful development of individual combat system.

Exercise Detection Method by Using Heart Rate and Activity Intensity in Wrist-Worn Device (손목형 웨어러블 디바이스에서 사람의 심박변화와 활동강도를 이용한 운동 검출 방법)

  • Sung, Ji Hoon;Choi, Sun Tak;Lee, Joo Young;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.4
    • /
    • pp.93-102
    • /
    • 2019
  • As interest in wellness grows, There is a lot of research about monitoring individual health using wearable devices. Accordingly, a variety of methods have been studied to distinguish exercise from daily activities using wearable devices. Most of these existing studies are machine learning methods. However, there are problems with over-fitting on individual person's learning, data discontinuously recognition by independent segmenting and fake activity. This paper suggests a detection method for exercise activity based on the physiological response principle of heart rate up and down during exercise. This proposed method calculates activity intensity and heart rate from triaxial and photoplethysmography sensor to determine a heart rate recovery, then detects exercise by estimating activity intensity or detecting a heart rate rising state. Experimental results show that our proposed algorithm has 98.64% of averaged accuracy, 98.05% of averaged precision and 98.62% of averaged recall.

Attention-Based Heart Rate Estimation using MobilenetV3

  • Yeo-Chan Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.1-7
    • /
    • 2023
  • The advent of deep learning technologies has led to the development of various medical applications, making healthcare services more convenient and effective. Among these applications, heart rate estimation is considered a vital method for assessing an individual's health. Traditional methods, such as photoplethysmography through smart watches, have been widely used but are invasive and require additional hardware. Recent advancements allow for contactless heart rate estimation through facial image analysis, providing a more hygienic and convenient approach. In this paper, we propose a lightweight methodology capable of accurately estimating heart rate in mobile environments, using a specialized 2-channel network structure based on 2D convolution. Our method considers both subtle facial movements and color changes resulting from blood flow and muscle contractions. The approach comprises two major components: an Encoder for analyzing image features and a regression layer for evaluating Blood Volume Pulse. By incorporating both features simultaneously our methodology delivers more accurate results even in computing environments with limited resources. The proposed approach is expected to offer a more efficient way to monitor heart rate without invasive technology, particularly well-suited for mobile devices.

Blood glucose prediction using PPG and DNN in dogs - a pilot study (개의 PPG와 DNN를 이용한 혈당 예측 - 선행연구)

  • Cheol-Gu Park;Sang-Ki Choi
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • This paper is a study to develop a deep neural network (DNN) blood glucose prediction model based on heart rate (HR) and heart rate variability (HRV) data measured by PPG-based sensors. MLP deep learning consists of an input layer, a hidden layer, and an output layer with 11 independent variables. The learning results of the blood glucose prediction model are MAE=0.3781, MSE=0.8518, and RMSE=0.9229, and the coefficient of determination (R2) is 0.9994. The study was able to verify the feasibility of glycemic control using non-blood vital signs using PPG-based digital devices. In conclusion, a standardized method of acquiring and interpreting PPG-based vital signs, a large data set for deep learning, and a study to demonstrate the accuracy of the method may provide convenience and an alternative method for blood glucose management in dogs.

Study on the Variation of Driver's Biosignals According to the Color Temperature of Vehicle Interior Mood Lighting (자동차 실내 무드조명의 색온도에 따른 운전자의 생체신호 변화)

  • Kim, Kyu-Beom;Jo, Hyung-Seok;Kim, Young-Jung;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.3-12
    • /
    • 2020
  • The purpose of this work is to suggest the optimal color temperature, which induces a sense of comfort for autonomous vehicle users through the analysis of biosignal using electroencephalography (EEG) and photoplethysmography (PPG). To achieve this purpose, we applied lighting with a color temperature of 3000 K, 4000 K, 5000 K, and 6000 K to the autonomous driving environment. We experimented in a laboratory equipped with a graphic driving simulator. The experimental procedure is as follows: 1) stabilization (5 min). 2) Uchida-Kraepelin test (3 min). 3) Automatic driving + lighting (3 min). This procedure was repeated four times under different color temperatures. We performed frequency analysis on a collected time-series data and calculated the power value for each frequency band through power spectrum analysis. In the case of EEG, we analyzed α- and β-waves, which are indicators of stability and arousal, respectively. In the case of PPG, we analyzed the sympathetic nervous system activity. To reduce deviations between the subjects, we normalized the data before analysis. The result of the first analysis revealed that α-wave increased only at 5000 K, while the β-wave increased at almost all color temperatures. In addition, in the case of PPG, sympathetic nervous system activity (SNSA) increased under driving conditions. The result of the second analysis revealed that the difference between β-wave and SNSA is insignificant. In conclusion, the increase in α-waves showed that EEG was most stable at 5000 K. The results of this study can be applied to the upcoming autonomous driving era to induce high driver satisfaction. Furthermore, this approach could eventually lead to the acceptance of autonomous vehicles by suggesting a positive effect of autonomous driving.

Evaluation of PPG signals regarding to video attributes of smart-phone camera (스마트폰 카메라의 영상 속성에 따른 맥파 신호 평가)

  • Lee, Haena;Kim, Minhee;Whang, MinCheol;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.917-924
    • /
    • 2015
  • In this study, we study that the video attributes captured by built-in camera in smart-phone can effect on the quality of PPG signal. The conditions of video attributes were composed of the bitrate, the resolution, the flash. As each condition, we measured a change in the red value of the video image and calculated a PPI(Pulse to Pulse Interval) for extracting the pulse wave signal. 20 subjects participated in the experiment and this experiment was carried out 18 tasks. The PPG signal was measured simultaneously for two minutes with the PPG sensor in the middle finger and Smart-phone in the forefinger of the right hand. By proceeding the correlation analysis, we obtained the highest correlation condition(83%, p=0.01), which the resolution was $640{\times}480$, bitrate was 5000kbps, flash was on. As a result, this study will be a useful guide for quality of signals in the pulse signal measurement system using built-in camera in smart-phone.

Difference of Autonomic Nervous System Responses among Boredom, Pain, and Surprise (무료함, 통증, 그리고 놀람 정서 간 자율신경계 반응의 차이)

  • Jang, Eun-Hye;Eum, Yeong-Ji;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.503-512
    • /
    • 2011
  • Recently in HCI research, emotion recognition is one of the core processes to implement emotional intelligence. There are many studies using bio signals in order to recognize human emotions, but it has been done merely for the basic emotions and very few exists for the other emotions. The purpose of present study is to confirm the difference of autonomic nervous system (ANS) response in three emotions (boredom, pain, and surprise). There were totally 217 of participants (male 96, female 121), we presented audio-visual stimulus to induce boredom and surprise, and pressure by using the sphygmomanometer for pain. During presented emotional stimuli, we measured electrodermal activity (EDA), skin temperature (SKT), electrocardiac activity (ECG) and photoplethysmography (PPG), besides; we required them to classify their present emotion and its intensity according to the emotion assessment scale. As the results of emotional stimulus evaluation, emotional stimulus which we used was shown to mean 92.5% of relevance and 5.43 of efficiency; this inferred that each emotional stimulus caused its own emotion quite effectively. When we analyzed the results of the ANS response which had been measured, we ascertained the significant difference between the baseline and emotional state on skin conductance response, SKT, heart rate, low frequency and blood volume pulse amplitude. In addition, the ANS response caused by each emotion had significant differences among the emotions. These results can probably be able to use to extend the emotion theory and develop the algorithm in recognition of three kinds of emotions (boredom, surprise, and pain) by response measurement indicators and be used to make applications for differentiating various human emotions in computer system.

  • PDF