• Title/Summary/Keyword: Photon emission microscopy

Search Result 8, Processing Time 0.024 seconds

Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy (이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화)

  • Joo, Yongjoon;Son, Si Hyung;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

Visualization of Epidermis and Dermal Cells in ex vivo Human Skin Using the Confocal and Two-photon Microscopy

  • Choi, Sang-Hoon;Kim, Wi-Han;Lee, Yong-Joong;Lee, Ho;Lee, Weon-Ju;Yang, Jung-Dug;Shim, Jong-Won;Kim, Jin-Woong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The confocal laser scanning microscopy and two-photon microscopy was implemented based on a single laser source and an objective lens. We imaged and compared the morphology of identical sites of ex vivo human skin using both microscopes. The back-scattering emission from the sample provided the contrast for the confocal microscopy. The intrinsic autofluorescence and the second harmonic generation were used as the luminescence source for the two-photon microscopy. The wavelength of the Ti:Sapphire laser was tuned at 710 nm, which corresponds to the excitation peak of NADH and FAD in skin tissue. The various cell layers in the epidermis and the papillary dermis were clearly distinguished by both imaging modalities. The two-photon microscopy more clearly visualized the intercellular region and the nucleus of the cell compared to the confocal microscopy. The fibrous structures in the dermis were more clearly resolved by the confocal microscopy. Numerous cells in papillary dermal layer, as deep as $100\;{\mu}m$, were observed in both CLSM and two-photon microscopy. While most previous studies focused on fibrous structure imaging (collagen and elastin fiber) in the dermis, we demonstrated that the combined imaging with the CLSM and two-photon microscopy can be applied for the non-invasive study of the population, distribution and metabolism of papillary dermal cells in skin.

A Novel Method for the Fabrication of Monodispersed Carbon Nanospheres and Their Crosslinked Forms

  • Im, Ji-Eun;Lee, Ha-Na;Li, Jing;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.871-874
    • /
    • 2014
  • Monodispersed carbon nanospheres (CNSs) were fabricated by a novel method and their structural properties were investigated. CNSs were prepared by the pyrolysis of nanospherical polystyrenes (PS). With the coating of $SiO_2$ shell, PS particles were effectively separated during pyrolysis process which resulted to CNSs with an average diameter of 40 nm. Moreover, CNSs could be crosslinked with each other through the bondings between the functional groups on their surfaces. Morphology of the fabricated carbon spheres and their crosslinked form were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FT-IR).

Fast Noise Reduction Approach in Multifocal Multiphoton Microscopy Based on Monte-Carlo Simulation

  • Kim, Dongmok;Shin, Younghoon;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.421-430
    • /
    • 2021
  • The multifocal multiphoton microscopy (MMM) enables high-speed imaging by the concurrent scanning and detection of multiple foci generated by lenslet array or diffractive optical element. The MMM system mainly suffers from crosstalk generated by scattered emission photons that form ghost images among adjacent channels. The ghost image which is a duplicate of the image acquired in sub-images significantly degrades overall image quality. To eliminate the ghost image, the photon reassignment method was established using maximum likelihood estimation. However, this post-processing method generally takes a longer time than image acquisition. In this regard, we propose a novel strategy for rapid noise reduction in the MMM system based upon Monte-Carlo (MC) simulation. Ballistic signal, scattering signal, and scattering noise of each channel are quantified in terms of photon distribution launched in tissue model based on MC simulation. From the analysis of photon distribution, we successfully eliminated the ghost images in the MMM sub-images. If the priori MC simulation under a certain optical condition is established at once, our simple, but robust post-processing technique will continuously provide the noise-reduced images, while significantly reducing the computational cost.

Novel Fabrication of CdS Hollow Spheres Induced by Self-assembled Process

  • Choi, Kyoung-Hoon;Chae, Weon-Sik;Jung, Jin-Seung;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1118-1120
    • /
    • 2009
  • Micro-size CdS spheres of hollow shape were fabricated through the self-assembly of high density arrow-like nanorods. The synthesis of the CdS hollow spheres were accomplished in an aqueous solution of cadmium nitrate and triblock copolymer (Pluronic P123) at low temperature (80 ${^{\circ}C}$) through the slow release of S2- ions from thioacetamide. Morphology of the fabricated CdS hollow spheres was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results indicate that the arrow-like CdS nanorods are simultaneously grown and attached each other to form the building units that become the spheres with hollow inside as a self-assembled process. The CdS spheres have a diameter of $2{\sim}3 {\mu}m$ and consist of the nanorods with a length of$\sim$800 nm. The nanocrystal building blocks have a hexagonal CdS structure.

EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals

  • Lee, Jae-Woog;Lee, Sang-Min;Huh, Young-Duk;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1997-2002
    • /
    • 2010
  • ZnSe and ZnS:Mn nanocrystals were synthesized via the thermal decomposition of their corresponding organometallic precursors in a hot coordinating solvent (TOP/TOPO) mixture. The organic surface capping agents were substituted with EDTA molecules to impart hydrophilic surface properties to the resulting nanocrystals. The optical properties of the water-dispersible nanocrystals were analyzed by UV-visible and room temperature solution photoluminescence (PL) spectroscopy. The powders were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and confocal laser scanning microscopy (CLSM). The solution PL spectra revealed emission peaks at 390 (ZnSe-EDTA) and 597 (ZnS:Mn-EDTA) nm with PL efficiencies of 4.0 (former) and 2.4% (latter), respectively. Two-photon spectra were obtained by fixing the excitation light source wavelengths at 616 nm (ZnSe-EDTA) and 560 nm (ZnS:Mn-EDTA). The emission peaks appeared at the same positions to that of the PL spectra but with lower peak intensity. In addition, the morphology and sizes of the nanocrystals were estimated from the corresponding HR-TEM images. The measured average particle sizes were 5.4 nm (ZnSe-EDTA) with a standard deviation of 1.2 nm, and 4.7 nm (ZnS:Mn-EDTA) with a standard deviation of 0.8 nm, respectively.

Dye-sensitized solar cells using size dependent SBM binder

  • Park, Gyeong-Hui;Kim, Eun-Mi;Jo, Hong-Gwan;Wang, Gyo;Hong, Chang-Guk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.116-116
    • /
    • 2009
  • $TiO_2$ pastes was synthesized to obtained of high efficiency dye-sensitized solar cells using size dependent co-polymer. SBM co-polymer binder is consist of styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The photoanodes were characterized by ATR-Fourier Transform spectrometer, X-ray diffraction (XRD) and morphology was investigated by field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density, AC impedance and monochromatic incident photon-to-current conversion efficiency (IPCE). DSSC based on the 100nm size co-polymer binder was obtained conversion efficiency of 8.1% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF