• Title/Summary/Keyword: Photon Mapping

Search Result 33, Processing Time 0.024 seconds

Photon Mapping-Based Rendering Technique for Smoke Particles (연기 파티클에 대한 포톤 매핑 기반의 렌더링 기법)

  • Song, Ki-Dong;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.7-18
    • /
    • 2008
  • To realistically produce fluids such as smoke for the visual effects in the films or animations, we need two main processes: a physics-based modeling of smoke and a rendering of smoke simulation data, based on light transport theory. In the computer graphics community, the physics-based fluids simulation is generally adopted for smoke modeling. Recently, the interest of the particle-based Lagrangian simulation methods is increasing due to the advantages at simulation time, instead of the grid-based Eulerian simulation methods which was widely used. As a result, because the smoke rendering technique depends heavily on the modeling method, the research for rendering of the particle-based smoke data still remains challenging while the research for rendering of the grid-based smoke data is actively in progress. This paper focuses on realistic rendering technique for the smoke particles produced by Lagrangian simulation method. This paper introduces a technique which is called particle map, that is the expansion and modification of photon mapping technique for the particle data. And then, this paper suggests the novel particle map technique and shows the differences and improvements, compared to previous work. In addition, this paper presents irradiance map technique which is the pre-calculation of the multiple scattering term in the volume rendering equation to enhance efficiency at rendering time.

  • PDF

Liquid Animation for CG Production (CG 제작을 위한 유체 애니메이션)

  • Cha Dukhyun;Kim Janghee;Min Jungki;Ihm Insung;Kang Byungkwon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • Fluid is an effective element in computer animation. Recently, the techniques from CFD have been actively applied to CG production. In this paper, we describe our fluid animation system which implements a variety of established simulation and rendering methods. We also explain our new techniques such as chemical reaction and hardware-assisted fluid animation that are being developed to enhance the features of our software system.

  • PDF

The changes of cerebral blood flow by brain imaging algorithm in the Normal Brains : Analysis by Statistical Parametric Mapping (정상 뇌혈류 영상에서 재구성 알고리즘 적용에 따른 섭취율 차이 : 통계적 파라미터 지도를 사용한 분석)

  • Lee, Hyo-Yeong;Kim, Yun-Jin;Sin, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5311-5316
    • /
    • 2012
  • Single Photon Emission Computed tomography(SPECT) was performed on 13 healthy adults (average age: 39) to investigate the changes of cerebral blood flow according to brain imaging analysis algorithm. The acquired images were filtered and reconstructed through Filtered Back Projection (FBP) and Ordered Subset Expectation Maximization (OSEM). The brain distribution data of radiopharmaceuticals were compared using Statistical Parametric Mapping (SPM), and the changes of blood flow was expressed in Cluster. As a result, uptake rate was increased in Sub-gyral, Sub-Lobar, Extra-Nuclear, Limbic lobe and Cingulate Gyrus, while uptake rate was decreased in Middle frontal gyrus, Inferior Frontal Gyrus and Precentral Gyrus. The discriminable SPM was shown according to cerebral blood flows in Cluster by the reconstruction algorithm.

High-Quality Global Illumination Production Using Programmable Graphics Hardware (프로그래밍 가능한 그래픽스 하드웨어를 사용한 고품질 전역 조영 생성)

  • Cha, Deuk-Hyun;Chang, Byung-Joon;Ihm, In-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.414-419
    • /
    • 2008
  • 3D rendering is a critical process for a movie production, advertisement, interior simulation, medical and many other fields. Recently, several effective rendering methods have been developed for the photo-realistic image generation. With a rapid performance enhancement of graphics hardware, physically based 3D rendering algorithm can now often be approximated in real-time games. However, the high quality of global illumination, required for the image generation in the 3D animation production community is a still very expensive process. In this paper, we propose a new rendering method to create photo-realistic global illumination effect efficiently by harnessing the high power of the recent GPUs. Final gathering routines in our global illumination module are accelerated by programmable graphics hardware. We also simulate physically based light transport on a ray tracing based rendering algorithm with photon mapping effectively.

  • PDF

Reduced Regional Cerebral Blood Flow in Patients with Traumatic Brain Injury Who Had No Structural Abnormalities on Magnetic Resonance Imaging : A Quantitative Evaluation of Tc-99m-ECD SPECT Findings (정상 MRI 소견을 보이는 외상성 뇌손상 환자에서 국소뇌혈류량의 이상)

  • Kim, Nam-Hee;Chung, Young-Ki
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2002
  • Background & Purpose:Neuropsychological disorders after traumatic brain injury(TBI) are poorly correlated with structural lesions detected by structural neuroimaging techniques such as computed tomography(CT) scan or magnetic resonance imaging(MRI). It is well known that patients with TBI have cognitive and behavioral disorders even in the absence of structural lesions of the brain. This study investigated whether there are abnormalities of regional cerebral blood flow(rCBF) in TBI patients without structural abnormality on MRI, using technetium 99m ethyl cysteinate dimer(Tc-99m-ECD) single photon emission computed tomography(SPECT) scans. Materials and Methods:Twenty-eight TBI patients without structural abnormality on MRI(mild, n=13/moderate, n=9/severe, n=6) and fifteen normal controls were scanned by SPECT. A voxel-based analysis using statistical parametric mapping(SPM) was performed to compare the patients with the normal controls. Results:rCBF was reduced in the right uncus and the right lateral orbitofrontal gyrus in the TBI patients. However, no increase of rCBF was noted in the patients in comparison to the normal controls. Conclusions:These results suggest that the TBI patients, even in the absence of structural lesion of the brain, may have dysfunction of the brain, particularly of the orbitofrontal and anterior pole of the temporal cortex. They also suggest that SPECT can be a useful method to identify brain dysfunctions in combination with structural brain imaging and neuropsychological tests.

  • PDF

Density Estimation Technique for Effective Representation of Light In-scattering (빛의 내부산란의 효과적인 표현을 위한 밀도 추정기법)

  • Min, Seung-Ki;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • In order to visualize participating media in 3D space, they usually calculate the incoming radiance by subdividing the ray path into small subintervals, and accumulating their respective light energy due to direct illumination, scattering, absorption, and emission. Among these light phenomena, scattering behaves in very complicated manner in 3D space, often requiring a great deal of simulation efforts. To effectively simulate the light scattering effect, several approximation techniques have been proposed. Volume photon mapping takes a simple approach where the light scattering phenomenon is represented in volume photon map through a stochastic simulation, and the stored information is explored in the rendering stage. While effective, this method has a problem that the number of necessary photons increases very fast when a higher variance reduction is needed. In an attempt to resolve such problem, we propose a different approach for rendering particle-based volume data where kernel smoothing, one of several density estimation methods, is explored to represent and reconstruct the light in-scattering effect. The effectiveness of the presented technique is demonstrated with several examples of volume data.

Sentinel lymph node mapping using tri-modal human serum albumin conjugated with visible dye, near infrared fluorescent dye and radioisotope

  • Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.62-73
    • /
    • 2015
  • We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.

Realistic Rendering of Explosion and Flame Using Photon-Mapping (포톤 매핑 기법을 이용한 폭발 및 화염의 사실적인 렌더링 기법)

  • Kang, Byung-Kwon;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.3
    • /
    • pp.40-51
    • /
    • 2004
  • 최근 활발하게 진행되고 있는 물리 기반 유체 애니메이션에 관한 연구 결과 다양한 형태의 유체 시뮬레이션 데이터가 빈번히 생성되고 있다. 이러한 데이터를 사용하여 고급 애니메이션을 제작하기 위해서는 사실적인 유체 렌더링 기법의 적용이 필수적이다. 본 논문에서는 자연 현상 중에서 컴퓨터 애니메이션 제작에 있어 매우 유용하게 사용할 수 있는 폭발이나 화염과 같은 부류의 유체에 대하여 렌더링의 사실성을 향상 시킬 수 있는 기법을 제안한다. 본 기법은 물리 기반 시뮬레이션을 통하여 산출되는 유체의 여러 물리적 성질에 대하여 포톤 매핑 기법을 적용함으로써, 연기 데이터에 대하여 유체 광원이나 섬광 등과 같은 특수 효과를 구현하는 데에 유용하게 사용될 수 있다.

  • PDF

A Study on Revaluation of copy theory in Representational Gaps Extinction of CGI (CGI(Computer-Generated Imagery)의 재현적 간극 소멸에서 보여지는 모사이론의 재평가에 관한 연구)

  • Chung, Kue-Hyung
    • Cartoon and Animation Studies
    • /
    • s.29
    • /
    • pp.103-128
    • /
    • 2012
  • Study about existence of illusion which human beings feel from imitated image based reality have been continuing by copy theory and conventionalism for a long time. Traditional copy theory which had controlled representation theory from plato have explained illusion by similarity of image and representation objects. According to copy theory, image is natural sign unlike language but the late in the 20th century, conventionalism from N, Goodman insists they are not any special similarity between image and representation objects. They insist image and conventional sign just as language. These opposit theory rearranged conventionalism by the entrance on the cognitive science. The copy theory couldn't explain the problem of representational gap between reality and duplication, but photo media makes new paradigm about theory of the illusion. The problem of representational gap was disappeared by CGI images on the base of digital media. We are exposed exquisite duplication for a example, movie, advertisement, printings. Sometimes duplications are more real than the original works. Digital is a non-material object by 0 and 1. Specially real lighting skill and mechanism are copied perfectly by photon mapping skills and the duplications are produced more real than the original works. By disappearance of representational gap, we need new theory model for explaining of digital illusion and copy theory can be the key.

The acupuncture mechanism related brain in Medline and the journal of Korean acupuncture & moxibustion (PubMed와 대한침구학회지(大韓針灸學會誌) 논문(論文) 검색(檢索)을 통(通)한 침요법(鍼療法)과 뇌(腦)와의 관계(關係)에 대한 연구동향(硏究動向) 고찰(考察))

  • Kim, Hoo-Dong;Koh, Hyung-Kyun;Kim, Chang-Hwan
    • Journal of Acupuncture Research
    • /
    • v.18 no.4
    • /
    • pp.188-200
    • /
    • 2001
  • Background and Objetive : Acupuncture is a valuable method of oriental medicine with broad application in many disease. It is based on the experiences of traditional oriental medicine as well as on experimentally proven biological (biochemical and neurophysiological) effects. Acupuncture theory has been explained by the meridian system that is thought to be linked with particular organs. However, in western medicine it is held that many disorders are either controlled or affected by the brain. Material and Method : In order to review the studies concerned with the mechanism related brain, we have referred to the Pubmed site and the Journal of Korean acupuncture and moxibustion Result and Conculsion : Among the 12 studies in the Journal of Korean acupuncture and moxibustion, 8 papers related neurotransmitters were done by experimental study, 4 papers related brain mapping were done by clinical study. Among the 8 studies related brain mapping in the Pubmed site, 6 clinical studies using functional magnetic resonance imaging(fMRI) were done and I clinical study using single-photon emission computed tomography(SPECT) was done, I paper was review article. By the above result, it would be needed further research on the acupuncture mechanism related brain using SPECT, fMRI, positron emission tomography(PET) etc.

  • PDF