• Title/Summary/Keyword: Photolytic rate constant

Search Result 3, Processing Time 0.017 seconds

Interconversion of Electronic Spin State of p-Substituted Arylketocarbene Reactions

  • Sung, Dae-Dong;Jeong, Jin-Hee;Ryu, Zoon-Ha;Chin, Won-Bae;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1231-1237
    • /
    • 2004
  • Rate constants for photolytic reactions of p-substituted 2-diazopropiophenones were determined in acetonitrile. The reactions show a comparatively low value of activation energy and activation enthalpy to alkylcarbenes or other arylcarbenes. The transition state corresponds to the step of a new carbonyl bond formation. The high negative ρ -values are shown in Hammett plots. The kinetics results and EPR spectrum are in accord with a phenomenon that occurs in interconversion between singlet and triplet carbenes.

Photolytic Characteristics of TiO2 Treated by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어 방전으로 표면처리된 TiO2 분말의 광분해 특성)

  • Kang, Jeong A;Kim, Yoon Kee
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.406-411
    • /
    • 2016
  • In order to reuse the photocatalyst and enhance the photolysis efficiency, we have used atmospheric pressure dielectric barrier discharge (APDBD) to clean and activate $TiO_2$ powder. The photocatalytic activity of the $TiO_2$ powder before and after APDBD treatment was evaluated by the degradation of methylene blue (MB) in aqueous solution. The apparent reaction rate constant of photolysis of the first sample of reused $TiO_2$ cleaned by APDBD improved to a level up to 0.32h-1 higher than the 30 % value of the initial $TiO_2$ powder. As the number of photolysis reactions and APDBD cleanings increased, the apparent rate constants gradually decreased; however, the fourth photolysis reaction still showed a value that was greater than 10% of the initial value. In addition, APDBD treatment enhanced the process by which $TiO_2$ effectively adsorbed MB at every photolysis stage.

Photocatalytic Degradation and Detoxification of Bisphenol A Using TiO2 Nanoparticles (TiO2 나노입자 광촉매 반응에 의한 비스페놀 A의 분해 제거 및 독성 저감)

  • Jo, A-Yeong;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • Photocatalytic degradation of bisphenol A (BPA) in aqueous solution was investigated using $TiO_2$ nanoparticles (Degussa P25) in this study. After a 3 hr photocatalytic reaction (${\lambda}=365nm$ and $I=3mW\;cm^{-2}$, $[TiO_2]=2.0g\;L^{-1}$), 98% of BPA ($1.0{\times}10^{-5}M$) was degraded and 89% of the total organic carbon was removed. In addition, BPA degradation by photolytic, hydrolytic and adsorption reactions was found to be 2%, 5% and 13%, respectively. The reaction rate of BPA degradation by photocatalysis decreased with increasing concentration of methanol that is used as a hydroxyl radical scavenger. This indicates that the reaction between BPA and hydroxyl radical was the key mechanism of BPA degradation. The pseudo-first-order reaction rate constant for this reaction was determined to be $7.94{\times}10^{-4}min^{-1}$, and the time for 90% BPA removal was found to be 25 min. In addition, acute toxicity testing using Daphnia magna neonates (< 24 h old) was carried out to evaluate the reduction of BPA toxicity. Acute toxicity (48 hr) to D. magna was decreased from 2.93 TU (toxic unit) to non-toxic after photocatalytic degradation of BPA for 3 hr. This suggests that there was no formation of toxic degradation products from BPA photocatalysis.