• Title/Summary/Keyword: Photoluminescence properties

Search Result 896, Processing Time 0.03 seconds

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Influence of the Fluorine-doping Concentration on Nanocrystalline ZnO Thin Films Deposited by Sol-gel Process

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.2-204.2
    • /
    • 2013
  • Wide band gap II-VI semiconductors have attracted the interest of many research groups during the past few years due to the possibility of their applications in light-emitting diodes and laser diodes. Among the II-VI semiconductors, ZnO is an important optoelectronic device material for use in the violet and blue regions because of its wide direct band gap (Eg ~3.37 eV) and large exciton binding energy (60 meV). F-doped ZnO (FZO) and undoped ZnO thin films were grown onto quartz substrate by the sol-gel spin-coating method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0 to 5 in 1 steps. To investigate the effects of the structure and optical properties of FZO thin films were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL). In the XRD, the residual stress, FWHM, bond length, and average grain size were changed with increasing the doping concentration. For the PL spectra, the high INBE/IDLE ratio of the FZO thin films doping concentration at 1 at.% than the other samples.

  • PDF

Synthesis and Photoluminescence Properties of $BaSiO_3:RE^{3+}$ (RE=Eu, Sm) Phosphor Powers

  • Jo, Sin-Ho;Choe, Dong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.180-180
    • /
    • 2013
  • 희토류 이온이 치환 고용된 실리케이트계 형광체는 자외선으로 여기될 때 높은 발광 효율을 나타내기 때문에 광전 소자, 레이저, 형광램프에 응용할 수 있는 발광 재료로 상당한 관심이 집중되고 있다. 본 연구에서는 고상반응법을 사용하여 초기 물질 (99.99% 순도), (99.99%), (99.9%), (99.9%)을 화학 정량으로 준비하여 활성제 이온 Eu3+와 Sm3+의 함량비를 0, 0.01, 0.05, 0.10, 0.20 mol로 변화시켜 BaSiO3:RE3+ (RE=Eu, Sm) 형광체를 제조하여 그것의 발광과 흡광 특성을 조사하였다. Eu3+ 이온이 도핑된 BaSiO3 형광체의 경우에, 발광 스펙트럼은 모든 시료에서 전이에 의한 발광 스펙트럼을 보였으며, 특히 j=2에서 가장 강한 적색 형광이 피크 620 nm에서 관측되었다. 상대적으로 발광 세기가 약한 595 nm 에 정점을 갖는 주황색 발광과 705 nm 에 피크를 갖는 적색 발광 스펙트럼이 관측되었다. Eu3+ 이온의 함량비가 0.15 mol 일 때 세 영역의 발광 스펙트럼의 세기는 최대값을 나타내었다. 주흡광 스펙트럼은 Eu3+ 이온의 함량비에 관계없이 397 nm에서 관측되었다. Sm3+ 이온이 도핑된 BaSiO3 형광체의 경우에, 모든 시료는 Sm3+ 이온의 함량비에 관계없이 전이에 의한 발광 스펙트럼을 보여주고 있으며, 특히 j=7/2에서 가장 강한 주황색 형광이 피크 603 nm에서 관측되었다. 상대적으로 발광 세기가 약한 567 nm에 정점을 갖는 황색 발광과 651 nm에 피크를 갖는 적색 발광 스펙트럼이 관측되었다. Sm3+ 이온의 함량비가 0.05 mol 일 때 세 종류의 발광 스펙트럼의 세기는 최대값을 나타내었다. Sm3+ 이온의 함량비가 더욱 증가함에 따라 모든 발광 스펙트럼의 세기는 순차적으로 감소하였는데, 이 현상은 농도 소광 현상에 기인함을 알 수 있었다. 주 흡광 스펙트럼은 Sm3+ 이온의 함량비에 관계없이 406 nm에서 관측되었으며, 이밖에도 상대적으로 세기가 약한 흡광 스펙트럼이 237 nm, 377 nm와 476 nm에서 관측되었다.

  • PDF

Optical and Electrical Properties of InAs Sub-Monolayer Quantum Dot Solar Cell

  • Han, Im-Sik;Park, Dong-U;No, Sam-Gyu;Kim, Jong-Su;Kim, Jin-Su;Kim, Jun-O
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.196.2-196.2
    • /
    • 2013
  • 본 연구에서는 분자선 에피택시 (MBE)법으로 성장된 InAs submonolayer quantum dot (SML-QD)을 태양전지에 응용하여 광학 및 전기적 특성을 평가하였다. 본 연구에서 사용된 양자점 태양전지(quantum dot solar cell, QDSC)의 구조는 n+-GaAs 기판 위에 n+-GaAs buffer와 n-GaAs base layer를 차례로 성장 한 후, 활성영역에 InAs/InGaAs SML-QD와 n-GaAs spacer layer를 8주기 형성하였다. 그 위에 p+-GaAs emitter, p+-AlGaAs window layer를 성장하고 ohmic contact을 위하여 p+-GaAs 를 성장하였다. SML-QD 구조의 두께는 0.3 ML 이며, 이때 SML-QD의 적층수를 4 stacks 으로 고정하였다. SML-QD 와의 비교를 위하여 2.0 ML크기의 InAs자발 형성 양자점 태양전지(SK-QDSC)과 GaAs 단일 접합 태양전지 (reference-SC)를 동일한 성장조건에서 제작하였다. PL 측정 결과, 300 K에서 SML-QD의 발광 피크는 SK-QD 보다 고에너지에서 나타나는데(1.349 eV), 이것은 SML-QD가 SK-QD보다 작은 크기를 가지기 때문으로 사료된다. SML-QD는 single peak를 보이는 반면, SK-QD는 dual peaks (1.112 / 1.056 eV)을 확인하였다. SML-QD의 반치폭(full width at half maximum, FWHM)이 SK-QD에 비하여 작은 것으로 보아 SML-QD가 SK-QD보다 양자점 크기 분포의 균일도가 높은 것으로 해석된다. Illumination I-V 측정 결과, SML-QDSC의 개방 전압(VOC) 과 단락전류밀도(JSC)는 SK-QDSC의 값과 비교해 보면, 각각 47 mV와 0.88 mA/cm2만큼 증가하였다. 이는 SK-QD보다 상대적으로 작은 크기를 가진 SML-QD로 인해 VOC가 증가되었으며, SML-QD가 SK-QD 보다 태양광을 흡수할 수 있는 영역이 비교적 적지만, QD내에 존재하는 energy level에서 탈출 할 수 있는 확률이 더 높음으로써 JSC가 증가한 것으로 분석 된다.

  • PDF

Synthesis and Characteristics of Diphosphine-digold complexes as Light-Emitting Materials (발광 재료용 다이포스핀-다이골드 착물의 합성과 특성 연구)

  • Kim, Jun-Ho;Sohn, Byung-Chung;Ha, Yun-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • Diphosphine dinuclear gold(I) complexes were synthesized from the reaction of bridged diphosphines and gold ions. As a bridged diphosphine, 1,2-bis(diphenylphosphino)metbane (dppm) or 1,1'-Bis(diphenylphosphino) ferrocene (dppf) was introduced. As anionic ligands, CI was first coordinated to Au, resulting in (diphosphine)$(AuCl)_{2}$. Then, the ligand, SPh, was substituted for Cl in the chloride complex to give (diphosphine)$(AuSPh)_{2}$. As a result, three digold complexes, (dppm)$(AuCl)_{2}$. (I), (dppf)$(AuCl)_{2}$. (II), and (dppf)$(AuSPh_{2}$. (III) were prepared in this study. The thermal properties were investigated at first hand to confirm that the gold complexes were in fact formed. The digold complexes were decomposed above $200^{\circ}C$ while the ligand, dppm or dppf, melts under $180^{\circ}C$ The photoluminescence (PL) spectra of the spin-coated thin films showed the maximum peak at 590, 595, and 540nm for the complex, I, II, and III, respectively. These complexes were found to give the orange color phosphorescence. Therefore, these digold complexes can be candidates for orange-red phosphorescent materials in organic electroluminescent devices (OELD). Further studies on application of the complexes as a dopant in an emitting layer are in progress in our laboratory.

Optical Properties for $CuGaTe_2/GaAs$ Epilayers Grown by Hot Wall Epilaxy (Hot Wall Epitaxy (HWE) 방법으로 성장된 $CuGaTe_2/GaAs$ 에피레이어의 광학적 특성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.167-170
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuGaT_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuGaTe_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, $CuGaTe_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $670^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is $2.1{\mu}m$. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $CuGaTe_2$ single crystal thin film, we have found that the values of spin orbit coupling ${\Delta}s.o$ and the crystal field splitting ${\Delta}cr$ were $0.079\underline{1}eV$ and $0.246\underline{3}eV$ at 10 K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.047\underline{0}eV$ and the dissipation energy of the donor-bound exciton and acceptor-bound exciton to be $0.049\underline{0}eV$, $0.055\underline{8}eV$, respectively.

  • PDF

Synthesis and characterization of CaZrO3:Pr3+ phosphor by skull melting method (스컬용융법에 의한 CaZrO3:Pr3+ 형광체 합성 및 특성분석)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.228-232
    • /
    • 2021
  • Ca1-xZrO3:xPr phosphor with perovskite structure was successfully synthesized by using skull melting method. The crystal structure, morphology and optical properties of synthesized phosphor were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet fluorescence reaction and photoluminescence. The XRD results indicated that single crystals of CaZrO3:Pr3+ belongs to orthorhombic perovskite system. The synthesized phosphor could be excited by UV light (254 nm) and the emission spectra results indicated that green luminescence of CaZrO3:Pr3+ due to charge transfer transition 3P03H4, 3P13H5 and 3P03H5 at 506, 536 and 548 nm was dominant.

Synthesis and Characterization of Swallow-Tail Perylene Bisimide as Organic Phosphor for Hybrid LED (Hybrid LED용 유기 형광체로서의 Swallow-Tail Perylene Bisimide 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.86-92
    • /
    • 2019
  • Although perylene bisimide derivatives have advantages such as excellent thermal stability and high luminance efficiency, they have poor solubility characteristics in organic solvents. In this research, in order to improve the solubility characteristics, we prepared perylene bisimide derivatives (1C) and (2C) with swallow-tail substituted imide, which is known to lead to excellent solubility. The structures and properties of swallow-tail perylene bisimide (1C) and (2C) were analyzed by $^1H-NMR$, FT-IR, UV/Vis spectroscopy, and thermogravimetric analysis (TGA). The maximum absorption wavelengths of (1C) and (2C) in the UV/Vis spectrum were 558 nm and 556 nm, respectively, and the maximum emission wavelengths were 602 nm and 600 nm, respectively. In the TGA, (1C) demonstrated good thermal stability with less than 5 wt% weight loss up to $242^{\circ}C$. In the solubility test, (1C) and (2C) exhibited solubilities of more than 5 wt% in chloroform, ethyl acetate, and dimethylformamide, but not in methanol. When the compounds (1C) and (2C) were mixed with PMMA (polymethyl methacrylate), thin films showed peaks at 679 nm and 677 nm, respectively, in the photoluminescence spectra. (1C) was found to be a possible candidate as red organic phosphor for hybrid LEDs.