• 제목/요약/키워드: Photoelectrochemical conversion

검색결과 63건 처리시간 0.029초

국내 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Fabrication of Metal-Semiconductor Interface in Porous Silicon and Its Photoelectrochemical Hydrogen Production

  • Oh, Il-Whan;Kye, Joo-Hong;Hwang, Seong-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4392-4396
    • /
    • 2011
  • Porous silicon with a complex network of nanopores is utilized for photoelectrochemical energy conversion. A novel electroless Pt deposition onto porous silicon is investigated in the context of photoelectrochemical hydrogen generation. The electroless Pt deposition is shown to improve the characteristics of the PS photoelectrode toward photoelectrochemical $H^+$ reduction, though excessive Pt deposition leads to decrease of photocurrent. Furthermore, it is found that a thin layer (< 10 ${\mu}m$) of porous silicon can serve as anti-reflection layer for the underlying Si substrate, improving photocurrent by reducing photon reflection at the Si/liquid interface. However, as the thickness of the porous silicon increases, the surface recombination on the dramatically increased interface area of the porous silicon begins to dominate, diminishing the photocurrent.

TiO2세라믹 전극의 광전기화학 변화에 미치는 첨가제 Al2O3와 Surface Roughness의 영향 (Influence of Dopant Al2O3 and Surface Roughness on the photoelectrochemical Conversion of TiO2 Ceramic Electrodes)

  • 윤기현;박경봉
    • 한국세라믹학회지
    • /
    • 제24권4호
    • /
    • pp.369-375
    • /
    • 1987
  • The effects of dopant Al2O3 and surface roughness on the photoelectrochemical conversion of TiO2 ceramic electrodes were investigated. The photocurrent increased with increasing the amount of dopant Al2O3 up to 0.1wt% and 0.05wt% in the specimens reduced at 700$^{\circ}C$ and 800$^{\circ}C$, respectively, and then decreased. However, the photoresponse appeared around 415 nm, which very closely corresponds to the energy band gap of TiO2(∼3.0eV), regardless of reduction temperature and the amount of Al2O3. And the photocurrent increased with increasing surface roughness in the undoped TiO2 ceramic electrode.

  • PDF

광전기화학 셀 적용을 목적으로 하는 화학적 박리법을 통한 그래핀의 제조 (Preparation of graphene by chemical exfoliation for application to the photoelectrochemical cell)

  • 윤상혁;이대원;김교선
    • 산업기술연구
    • /
    • 제35권
    • /
    • pp.59-65
    • /
    • 2015
  • As the fossil fuels are depleted nowadays, development of alternative energies is absolutely required in the world. Efficient production of hydrogen by water-splitting using solar energy can be one of the methods to solve the global energy and environmental problems. But this method has a problem of low conversion efficiency. The application of graphene can be one method to help increase the conversion efficiency. For this reason, mass production of high quality graphene is required. In this study, we prepared graphene using the chemical exfoliation method. We applied the Hummer's method and Tour's method to oxidize the graphite and could get the different Graphene Oxide(GO) from different process conditions. We also tried to convert the GO to graphene by thermal reduction and could remove functional group of GO effectively. The control of oxidation conditions was quite important to obtain the high quality graphene.

  • PDF

TiO2 세라믹 전극의 광전기 화학 변환에 미치는 결정립 크기와 첨가제 ZnO의 영향 (Influence of Grain Size and Dopant ZnO on the Photoelectrochemical Conversion in TiO2 Ceramic Electrods)

  • 윤기현;장병규;김태희
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.258-266
    • /
    • 1989
  • The effects of grain size and dopant ZnO on the photoelectrochemical conversion in TiO2 ceramic electrodes have been investigated. The photocurrent increases with increasing grain size in the undoped TiO2 ceramic electrode. In ZnO-doped TiO2 electrodes, the photocurrent decreases with increasing ZnO up to 0.4 wt% due to decrease of donor concentration, and then with further addition of ZnO, photocurrent increases according to the formation of second phase. However, the photoresponse appears at wavelength of 420nm, which is very close to the energy band gap of TiO2, regardless of grain size and amount of ZnO.

  • PDF

분무 열분해법에 의해 증착된 $SnO_2$ 박막의 광전기 화학 변환 특성 (Photoelectrochemical Conversion of $SnO_2$ Films Deosited by Spray Pyrolysis)

  • 김태희;박경봉;윤기현
    • 한국세라믹학회지
    • /
    • 제28권3호
    • /
    • pp.197-204
    • /
    • 1991
  • The photoelectrochemical conversion in SnO2 films deposited by spray pyrolysis using SnCl4-alcohol solution and N2 gas has been studied. The photocurrent increases with increasing deposition temperature up to 40$0^{\circ}C$ and then decreases, and the electron affinity decreases as the deposition temperature increases to 40$0^{\circ}C$. As the concentration of the spray solution increases, the photocurrent reaches a maximum value at the concentration of 0.05M, and the electron affinity is consistent. As the thickness of the film increases, the photocurrent increases with a maximum value at the thickness of 4600$\AA$, and electron affinity does not change.

  • PDF

수소생산을 위한 물 분해용 광전극에 도입된 환원된 산화그래핀이 광전기화학성능에 미치는 영향 (Effect of Reduced Graphene Oxide in Photoanode on Photoelectrochemical Performance in Water Splitting for Hydrogen Production)

  • 윤상혁;딩진루이;김교선
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.329-334
    • /
    • 2016
  • Hydrogen is eco-friendly alternative energy source and the photoelectrochemical water splitting is believed to be one of the promising methods for hydrogen production. Many researchers have studied several potential photocatalysts to increase the photoelectochemical performance efficiency for hydrogen conversion. In this study, the GO (graphene oxide) was prepared by Tour's method and was dispersed in precursor solutions of $WO_3$ and $BiVO_4$. Those precursor solutions were spin-coated on FTO glass and several photocatalyst thin films of $WO_3$, $BiVO_4$ and $WO_3/BiVO_4$ were prepared by calcination. The morphologies of prepared photocatalyst thin films were measured by scanning electron microscope. The photoelectrochemical performances of photocatalyst thin films with rGO (reduced graphene oxide) and without rGO were analyzed systematically.

전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구 (ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes)

  • 이환표;정혁;김옥길;김효진;김도진
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

$TiO_2$ 다결정 전극에 의한 광전기 화학변환 (Photoelectrodchemical Conversion by Polycrystalline $TiO_2$ Electrodes)

  • 윤기현;윤상옥
    • 한국세라믹학회지
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 1983
  • The photoelectrochemical conversion by polycrystalline $TiO_2$ electrodes is effected by applied voltage oxidized $TiO_2$ thickness temperature and concentration of a, P. E. C cell. Anodic current starts at -0.8V in 1N-NaOH solu-tion and photocurrent appears around 420nm frequency. And the emf of the cell drops with the rate of 58.5mV/PH.

  • PDF